OFFSET
0,3
COMMENTS
Also as a(n) = (1/6)*(14*n^3 - 12*n^2 + 4*n), n>0: structured cubeoctahedral numbers (vertex structure 7); and structured pentagonal anti-diamond numbers (vertex structure 7) (cf. A004466 = alternate vertex) (cf. A100188 = structured anti-diamonds). Cf. A100145 for more on structured polyhedral numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Starting with offset 1 = binomial transform of [1, 11, 24, 14, 0, 0, 0, ...]. - Gary W. Adamson, Aug 05 2009
This is prime for a(3) = 47. The subsequence of semiprimes begins: 707, 7435, 10897, 20741, 115477, 341797, 825091, 897097, no more through a(100). - Jonathan Vos Post, May 27 2010
REFERENCES
T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = n*(n*(7*n-6) + 2)/3.
G.f.: x*(1+8*x+5*x^2)/(1-x)^4. - Bruno Berselli, May 12 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=1, a(2)=12, a(3)=47. - Harvey P. Dale, Jul 22 2011
From Reinhard Zumkeller, Jul 25 2012: (Start)
a(n) = Sum_{k=1..n} A214661(n, k), for n > 0 (row sums). (End)
E.g.f.: (x/3)*(3 + 15*x + 7*x^2)*exp(x). - G. C. Greubel, Mar 10 2024
EXAMPLE
a(51) = 51*(51*(7*51-6)+2)/3 = 304351 = 17 * 17903 is semiprime. - Jonathan Vos Post, May 27 2010
MAPLE
MATHEMATICA
Table[n^3+4Sum[i^2, {i, 0, n-1}], {n, 0, 40}] (* or *) LinearRecurrence[ {4, -6, 4, -1}, {0, 1, 12, 47}, 40] (* Harvey P. Dale, Jul 22 2011 *)
PROG
(Magma) [n*(n*(7*n-6)+2)/3: n in [0..50]]; // Vincenzo Librandi, May 12 2011
(PARI) a(n)=n*(n*(7*n-6)+2)/3 \\ Charles R Greathouse IV, Oct 07 2015
(SageMath) [n*(7*n^2-6*n+2)/3 for n in range(51)] # G. C. Greubel, Mar 10 2024
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
EXTENSIONS
Corrected by T. D. Noe, Nov 01 2006, Nov 08 2006
STATUS
approved