login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051670
Smallest prime that concatenated with all previous terms of sequence forms a prime.
3
2, 3, 3, 3, 3, 23, 7, 3, 53, 19, 149, 571, 3, 131, 3, 151, 389, 31, 389, 97, 59, 277, 491, 181, 59, 67, 647, 1117, 797, 433, 41, 367, 29, 487, 719, 283, 347, 97, 1103, 193, 821, 13, 29, 31, 947, 619, 167, 229, 479, 271, 1217, 79, 2777, 241, 1361, 751, 83, 4603, 317
OFFSET
1,1
REFERENCES
A. Murthy, Smar. Notions J. Vol. 11, N. 1-2-3 Spring 2000
LINKS
Paul Zimmermann, Table of n, a(n) for n = 1..1127 [First 200 terms from T. D. Noe]
EXAMPLE
The 6th term of the sequence is 23 because that is smallest prime that when concatenated with previous terms 2, 3, 3, 3, 3, produces a prime (2333323).
MATHEMATICA
nxt[{lst_, n_}]:=Module[{id=IntegerDigits[lst], np=2}, While[ !PrimeQ[ FromDigits[ Join[id, IntegerDigits[np]]]], np=NextPrime[np]]; {FromDigits[ Join[id, IntegerDigits[np]]], np}]; Transpose[NestList[nxt, {2, 2}, 60]] [[2]] (* Harvey P. Dale, May 25 2015 *)
nxt[{l_, a_}]:=Module[{k=2}, While[CompositeQ[l*10^IntegerLength[k]+ k], k= NextPrime[ k]]; {l*10^IntegerLength[k]+k, k}]; NestList[nxt, {2, 2}, 60][[All, 2]] (* Harvey P. Dale, Aug 09 2020 *)
CROSSREFS
Cf. A048549 and A083758.
Sequence in context: A268607 A069603 A033679 * A089702 A089336 A089335
KEYWORD
nonn,base,nice
AUTHOR
Felice Russo, Dec 15 1999
EXTENSIONS
Extended by T. D. Noe, May 01 2010
STATUS
approved