Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Feb 07 2022 02:04:44
%S 2,3,3,3,3,23,7,3,53,19,149,571,3,131,3,151,389,31,389,97,59,277,491,
%T 181,59,67,647,1117,797,433,41,367,29,487,719,283,347,97,1103,193,821,
%U 13,29,31,947,619,167,229,479,271,1217,79,2777,241,1361,751,83,4603,317
%N Smallest prime that concatenated with all previous terms of sequence forms a prime.
%D A. Murthy, Smar. Notions J. Vol. 11, N. 1-2-3 Spring 2000
%H Paul Zimmermann, <a href="/A051670/b051670.txt">Table of n, a(n) for n = 1..1127</a> [First 200 terms from T. D. Noe]
%e The 6th term of the sequence is 23 because that is smallest prime that when concatenated with previous terms 2, 3, 3, 3, 3, produces a prime (2333323).
%t nxt[{lst_,n_}]:=Module[{id=IntegerDigits[lst],np=2},While[ !PrimeQ[ FromDigits[ Join[id, IntegerDigits[np]]]],np=NextPrime[np]];{FromDigits[ Join[id,IntegerDigits[np]]],np}]; Transpose[NestList[nxt,{2,2},60]] [[2]] (* _Harvey P. Dale_, May 25 2015 *)
%t nxt[{l_,a_}]:=Module[{k=2},While[CompositeQ[l*10^IntegerLength[k]+ k],k= NextPrime[ k]];{l*10^IntegerLength[k]+k,k}]; NestList[nxt,{2,2},60][[All,2]] (* _Harvey P. Dale_, Aug 09 2020 *)
%Y Cf. A048549 and A083758.
%K nonn,base,nice
%O 1,1
%A _Felice Russo_, Dec 15 1999
%E Extended by _T. D. Noe_, May 01 2010