login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051672
Triangle of up-down sums of k-th powers: a(n,k)=sum(i^k,i=1..n)+sum((n-i)^k,i=1..n-1), n,k>0.
0
1, 4, 1, 9, 6, 1, 16, 19, 10, 1, 25, 44, 45, 18, 1, 36, 85, 136, 115, 34, 1, 49, 146, 325, 452, 309, 66, 1, 64, 231, 666, 1333, 1576, 859, 130, 1, 81, 344, 1225, 3254, 5725, 5684, 2445, 258, 1, 100, 489, 2080, 6951, 16626, 25405, 21016, 7075, 514, 1, 121
OFFSET
1,2
FORMULA
a(n, 1)=n^2=A000290, a(n, 2)=1/3*n*(2*n^2+1)=A005900, a(n, 3)= (1/2) *n^2*(n^2+1)=A037270, a(n, 4)=1/15*n*(6*n^4+10*n^2-1), a(n, 5)=1/6*n^2*(2*n^4+5*n^2-1)
EXAMPLE
{1}; {4,1}; {9,6,1}; {16,19,10,1}; {25,44,45,18,1}; ...
MATHEMATICA
a[n_, k_] := HarmonicNumber[n, -k]+Zeta[-k]-Zeta[-k, n]; Flatten[ Table[ a[n-k+1, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Nov 29 2011 *)
CROSSREFS
KEYWORD
easy,nice,nonn,tabl
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
STATUS
approved