login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037270 a(n) = n^2*(n^2+1)/2. 29
0, 1, 10, 45, 136, 325, 666, 1225, 2080, 3321, 5050, 7381, 10440, 14365, 19306, 25425, 32896, 41905, 52650, 65341, 80200, 97461, 117370, 140185, 166176, 195625, 228826, 266085, 307720, 354061, 405450 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Sum of first n^2 integers.

Start from xanthene and attach amino acids according to the reaction scheme that describes the reaction between the active sites. See the hyperlink below on chemistry. - Robert G. Wilson v, Aug 02 2002; Amarnath Murthy, Aug 01 2002

Sum of the next n multiples of n. - Amarnath Murthy, Aug 01 2002

The sum of the terms in an n X n spiral. These are also triangular numbers. - William A. Tedeschi, Feb 27 2008

Hypotenuse of Pythagorean triangles with smallest side a cube: A000578(n)^2 + A083374(n)^2 = a(n)^2. - Martin Renner, Nov 12 2011

For n>1, triangular numbers that can be represented as a sum of a square and a triangular number. For example, a(2)=10=4+6=9+1. - Ivan N. Ianakiev, Apr 24 2012

A037270 can be constructed in the following manner: Take A000217 and for every n not in A000290 delete the corresponding A000217(n). - Ivan N. Ianakiev, Apr 26 2012

Starting at a(1)=1 simply take 1*1=1, a(2)= 2*(2+3)=10, a(3)= 3*(4+5+6)=45, a(4)=4*(7+8+9+10) and so on. - J. M. Bergot, May 01 2015

REFERENCES

C. Alsina and R. B. Nelson, Charming Proofs: A Journey into Elegant Mathematics, MAA, 2010. See p. 5.

Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 55.

de Bruijn, N. G. Some classes of integer-valued functions. Nederl. Akad. Wetensch. Proc. Ser. A. 58=Indag. Math. 17 (1955), 363--367. MR0071450. See page 363.

T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

R. A. Wilson, Cosmic Trigger, epilogue of S.-P. Sirag.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

J. D. Bell, A translation of Leonhard Euler's "De Quadratis Magicis", E795, arXiv:math/0408230 [math.CO], 2004-2005.

Th. Gruner, A. Kerber, R. Laue, M. Meringer, Mathematics for Combinatorial Chemistry

Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).

FORMULA

a(n) = a(n-1) + n^3 + (n-1)^3.

a(n) = A000537(n)+A000537(n-1), i.e., square of sum of first n integers plus square of sum of first n-1 integers. - Henry Bottomley, Oct 15 2001

a(n) = Sum_{k=0..n^2} k. - William A. Tedeschi, Feb 27 2008

a(n) = (1/8)*sinh(2*arcsinh(n)). - Artur Jasinski, Feb 10 2010

G.f.: x*(1+x)*(1+4*x+x^2)/(1-x)^5. - Colin Barker, Mar 22 2012

a(n) = a(n-1) + A005898(n-1). - Ivan N. Ianakiev, May 13 2012

a(n) = 2 * A000217(n-1) * A000217(n) + A000290(n). - Ivan N. Ianakiev, May 26 2012

a(n) = A000217(n^2). - J. M. Bergot, Jun 07 2012

a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5) n>4, a(0)=0, a(1)=1, a(2)=10, a(3)=45, a(4)=136. - Yosu Yurramendi, Sep 02 2013

For n>0, a(n) = A000217(n)^2 + A000217(n-1)^2. - Richard R. Forberg, Dec 25 2013

Let T(n) = A000217(n).  Then a(n) = T(T(n)) + T(T(n-1)) + T(T(n)-1) + T(T(n-1)-1). - Charlie Marion, Sep 10 2016

MATHEMATICA

Table[ n^2*((n^2 + 1)/2), {n, 0, 30} ]

Table[(1/8) Round[N[Sinh[2 ArcSinh[n]]^2, 100]], {n, 0, 30}] (* Artur Jasinski, Feb 10 2010 *)

LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 10, 45, 136}, 30] (* Harvey P. Dale, Aug 03 2014 *)

PROG

(PARI) a(n)=binomial(n^2+1, 2) \\ Charles R Greathouse IV, Apr 25 2012

CROSSREFS

Cf. A236770 (see crossrefs).

Sequence in context: A211032 A179095 A213188 * A027800 A005714 A175705

Adjacent sequences:  A037267 A037268 A037269 * A037271 A037272 A037273

KEYWORD

nonn,easy,nice

AUTHOR

Aaron Gulliver (gulliver(AT)elec.canterbury.ac.nz)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 14:45 EST 2016. Contains 278971 sequences.