login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037270 n^2*(n^2+1)/2. 26
0, 1, 10, 45, 136, 325, 666, 1225, 2080, 3321, 5050, 7381, 10440, 14365, 19306, 25425, 32896, 41905, 52650, 65341, 80200, 97461, 117370, 140185, 166176, 195625, 228826, 266085, 307720, 354061, 405450 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Sum of first n^2 integers.

Start from xanthene and attach amino acids according to the reaction scheme that describes the reaction between the active sites. See the hyperlink below on chemistry. - Robert G. Wilson v, Aug 02 2002; Amarnath Murthy, Aug 01 2002

Sum of the next n multiples of n. - Amarnath Murthy, Aug 01 2002

The sum of the terms in an n X n spiral. These are also triangular numbers. - William A. Tedeschi, Feb 27 2008

Hypotenuse of Pythagorean triangles with smallest side a cube: A000578(n)^2 + A083374(n)^2 = a(n)^2. - Martin Renner, Nov 12 2011

For n>1, triangular numbers that can be represented as a sum of a square and a triangular number. For example, a(2)=10=4+6=9+1. - Ivan N. Ianakiev, Apr 24 2012

A037270 can be constructed in the following manner: Take A000217 and for every n not in A000290 delete the corresponding A000217(n). - Ivan N. Ianakiev, Apr 26 2012

REFERENCES

C. Alsina and R. B. Nelson, Charming Proofs: A Journey into Elegant Mathematics, MAA, 2010. See p. 5.

Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 55.

T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

R. A. Wilson, Cosmic Trigger, epilogue of S.-P. Sirag.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

J. D. Bell, A translation of Leonhard Euler's "De Quadratis Magicis", E795

Th. Gruner, A. Kerber, R. Laue, M. Meringer, Mathematics for Combinatorial Chemistry

FORMULA

a(n) = a(n-1) + n^3 + (n-1)^3.

a(n) = A000537(n)+A000537(n-1), i.e. square of sum of first n integers plus square of sum of first n-1 integers. - Henry Bottomley, Oct 15 2001

a(n) = sum(k=0..n^2, k). - William A. Tedeschi, Feb 27 2008

a(n) = (1/8)*sinh(2*arcsinh(n)). - Artur Jasinski, Feb 10 2010

G.f.: x*(1+x)*(1+4*x+x^2)/(1-x)^5. - Colin Barker, Mar 22 2012

a(n) = a(n-1) + A005898(n-1). - Ivan N. Ianakiev, May 13 2012

a(n) = 2 * A000217(n-1) * A000217(n) + A000290(n). - Ivan N. Ianakiev, May 26 2012

a(n) = A000217(n^2). - J. M. Bergot, Jun 07 2012

a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5) n>4, a(0)=0, a(1)=1, a(2)=10, a(3)=45, a(4)=136. - Yosu Yurramendi, Sep 02 2013

For n>0, a(n) = A000217(n)^2 + A000217(n-1)^2. - Richard R. Forberg, Dec 25 2013

MATHEMATICA

Table[ n^2*((n^2 + 1)/2), {n, 0, 30} ]

Table[(1/8) Round[N[Sinh[2 ArcSinh[n]]^2, 100]], {n, 0, 30}] (* Artur Jasinski, Feb 10 2010 *)

PROG

(PARI) a(n)=binomial(n^2+1, 2) \\ Charles R Greathouse IV, Apr 25 2012

CROSSREFS

Cf. A236770 (see crossrefs).

Sequence in context: A211032 A179095 A213188 * A027800 A005714 A175705

Adjacent sequences:  A037267 A037268 A037269 * A037271 A037272 A037273

KEYWORD

nonn,easy,nice

AUTHOR

Aaron Gulliver (gulliver(AT)elec.canterbury.ac.nz)

EXTENSIONS

Reference from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 22 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 16 18:34 EDT 2014. Contains 240627 sequences.