login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037270 a(n) = n^2*(n^2 + 1)/2. 34
0, 1, 10, 45, 136, 325, 666, 1225, 2080, 3321, 5050, 7381, 10440, 14365, 19306, 25425, 32896, 41905, 52650, 65341, 80200, 97461, 117370, 140185, 166176, 195625, 228826, 266085, 307720, 354061, 405450 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Sum of first n^2 integers.

Start from xanthene and attach amino acids according to the reaction scheme that describes the reaction between the active sites. See the hyperlink below on chemistry. - Robert G. Wilson v, Aug 02 2002; Amarnath Murthy, Aug 01 2002

Sum of the next n multiples of n. - Amarnath Murthy, Aug 01 2002

The sum of the terms in an n X n spiral. These are also triangular numbers. - William A. Tedeschi, Feb 27 2008

Hypotenuse of Pythagorean triangles with smallest side a cube: A000578(n)^2 + A083374(n)^2 = a(n)^2. - Martin Renner, Nov 12 2011

For n>1, triangular numbers that can be represented as a sum of a square and a triangular number. For example, a(2)=10=4+6=9+1. - Ivan N. Ianakiev, Apr 24 2012

A037270 can be constructed in the following manner: Take A000217 and for every n not in A000290 delete the corresponding A000217(n). - Ivan N. Ianakiev, Apr 26 2012

Starting at a(1)=1 simply take 1*1=1, a(2)= 2*(2+3)=10, a(3)= 3*(4+5+6)=45, a(4)=4*(7+8+9+10) and so on. - J. M. Bergot, May 01 2015

Observation: The digital roots of the terms repeat in the sequence 1, 1, 9; e.g., the digital roots of 1, 10, 45, 136, 325, and 666 are 1, 1, 9, 1, 1, and 9. Verified for the first 10000 terms. - Rob Barton, Mar 28 2018

The above observation is easily explained and proved given that the digital root of a positive number equals the number modulo 9, and a(n + 9k) == a(n) (mod 9). - M. F. Hasler, Apr 05 2018

REFERENCES

C. Alsina and R. B. Nelson, Charming Proofs: A Journey into Elegant Mathematics, MAA, 2010. See p. 5.

Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 55.

de Bruijn, N. G. Some classes of integer-valued functions. Nederl. Akad. Wetensch. Proc. Ser. A. 58=Indag. Math. 17 (1955), 363--367. MR0071450. See page 363.

T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

R. A. Wilson, Cosmic Trigger, epilogue of S.-P. Sirag.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

J. D. Bell, A translation of Leonhard Euler's "De Quadratis Magicis", E795, arXiv:math/0408230 [math.CO], 2004-2005.

Th. Gruner, A. Kerber, R. Laue, M. Meringer, Mathematics for Combinatorial Chemistry

Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).

FORMULA

a(n) = a(n-1) + n^3 + (n-1)^3.

a(n) = A000537(n)+A000537(n-1), i.e., square of sum of first n integers plus square of sum of first n-1 integers. - Henry Bottomley, Oct 15 2001

a(n) = Sum_{k=0..n^2} k. - William A. Tedeschi, Feb 27 2008

a(n) = (1/8)*sinh(2*arcsinh(n)). - Artur Jasinski, Feb 10 2010

G.f.: x*(1+x)*(1+4*x+x^2)/(1-x)^5. - Colin Barker, Mar 22 2012

a(n) = a(n-1) + A005898(n-1). - Ivan N. Ianakiev, May 13 2012

a(n) = 2 * A000217(n-1) * A000217(n) + A000290(n). - Ivan N. Ianakiev, May 26 2012

a(n) = A000217(n^2). - J. M. Bergot, Jun 07 2012

a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5) n>4, a(0)=0, a(1)=1, a(2)=10, a(3)=45, a(4)=136. - Yosu Yurramendi, Sep 02 2013

For n>0, a(n) = A000217(n)^2 + A000217(n-1)^2. - Richard R. Forberg, Dec 25 2013

a(n) = T(T(n)) + T(T(n-1)) + T(T(n)-1) + T(T(n-1)-1), where T(n) = A000217(n). - Charlie Marion, Sep 10 2016

a(n) = t(n-3)*t(n)+t(n-1)*t(n+2), with t(n)=A000217(n). - J. M. Bergot, Apr 07 2018

MAPLE

seq(n^2*(n^2+1)/2, n=0..30); # Muniru A Asiru, Mar 28 2018

MATHEMATICA

Table[ n^2*((n^2 + 1)/2), {n, 0, 30} ]

Table[(1/8) Round[N[Sinh[2 ArcSinh[n]]^2, 100]], {n, 0, 30}] (* Artur Jasinski, Feb 10 2010 *)

LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 10, 45, 136}, 30] (* Harvey P. Dale, Aug 03 2014 *)

PROG

(PARI) a(n)=binomial(n^2+1, 2) \\ Charles R Greathouse IV, Apr 25 2012

(GAP) a:=List([0..30], n->n^2*(n^2+1)/2); # Muniru A Asiru, Mar 28 2018

CROSSREFS

Cf. A000217, A236770 (see crossrefs).

Sequence in context: A211032 A179095 A213188 * A027800 A005714 A175705

Adjacent sequences:  A037267 A037268 A037269 * A037271 A037272 A037273

KEYWORD

nonn,easy,nice

AUTHOR

Aaron Gulliver (gulliver(AT)elec.canterbury.ac.nz)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 22:57 EDT 2018. Contains 315425 sequences. (Running on oeis4.)