OFFSET
0,3
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
G.f.: x*(1 + 7*x + x^2)/(1 - x)^5.
a(n) = a(-n-1) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Sum_{n>=1} 1/a(n) = 2 + 4*sqrt(3/11)*Pi*tan(sqrt(11/3)*Pi/2) = 1.11700627139319... . - Vaclav Kotesovec, Apr 27 2016
MATHEMATICA
Table[n (n + 1) (3 n^2 + 3 n - 2)/8, {n, 0, 40}]
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 12, 51, 145}, 40] (* Harvey P. Dale, Aug 22 2016 *)
PROG
(PARI) for(n=0, 40, print1(n*(n+1)*(3*n^2+3*n-2)/8", "));
(Magma) [n*(n+1)*(3*n^2+3*n-2)/8: n in [0..40]];
CROSSREFS
Partial sums of A004188.
Cf. similar sequences on the polygonal numbers: A002817(n) = A000217(A000217(n)); A000537(n) = A000290(A000217(n)); A037270(n) = A000217(A000290(n)); A062392(n) = A000384(A000217(n)).
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 31 2014
STATUS
approved