|
|
A011779
|
|
Expansion of 1/((1-x)^3*(1-x^3)^2).
|
|
4
|
|
|
1, 3, 6, 12, 21, 33, 51, 75, 105, 145, 195, 255, 330, 420, 525, 651, 798, 966, 1162, 1386, 1638, 1926, 2250, 2610, 3015, 3465, 3960, 4510, 5115, 5775, 6501, 7293, 8151, 9087, 10101, 11193, 12376, 13650
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The Ca2 and Ze4 triangle sums of A139600 are related to the sequence given above, e.g., Ze4(n) = A011779(n-1) - A011779(n-2) - A011779(n-4) + 3*A011779(n-5), with A011779(n) = 0 for n <= -1. For the definitions of these triangle sums see A180662. [Johannes W. Meijer, Apr 29 2011]
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,3,-6,6,-3,3,-3,1).
|
|
MATHEMATICA
|
CoefficientList[Series[1 / ((1 - x)^3 (1 - x^3)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 23 2013 *)
|
|
PROG
|
(PARI) Vec(1/((1-x)^3*(1-x^3)^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
|
|
CROSSREFS
|
Cf. A236770 (first trisection, except 0).
Sequence in context: A053479 A290768 A070333 * A161809 A084439 A034344
Adjacent sequences: A011776 A011777 A011778 * A011780 A011781 A011782
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Emeric Deutsch
|
|
STATUS
|
approved
|
|
|
|