login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290768
a(n) = 3/2*(n^2 - n + 2).
1
3, 6, 12, 21, 33, 48, 66, 87, 111, 138, 168, 201, 237, 276, 318, 363, 411, 462, 516, 573, 633, 696, 762, 831, 903, 978, 1056, 1137, 1221, 1308, 1398, 1491, 1587, 1686, 1788, 1893, 2001, 2112, 2226, 2343, 2463, 2586, 2712, 2841, 2973, 3108, 3246, 3387, 3531, 3678
OFFSET
1,1
COMMENTS
For n > 2, also the number of (non-null) connected induced subgraphs in the n-pan graph.
LINKS
Eric Weisstein's World of Mathematics, Connected Graph
Eric Weisstein's World of Mathematics, Pan Graph
Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
FORMULA
a(n) = 3/2*(n^2 - n + 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -((3 x (1 - x + x^2))/(-1 + x)^3).
a(n) = 3*A000124(n-1). - R. J. Mathar, May 07 2024
MATHEMATICA
Table[3/2 (n^2 - n + 2), {n, 20}]
LinearRecurrence[{3, -3, 1}, {3, 6, 12}, 20]
CoefficientList[Series[-((3 (1 - x + x^2))/(-1 + x)^3), {x, 0, 20}], x]
CROSSREFS
Sequence in context: A054064 A246866 A053479 * A070333 A011779 A161809
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Aug 10 2017
STATUS
approved