login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053479
Circle numbers (version 6): a(n) = number of points (i+j/2,j*sqrt(3)/2), i,j integers (triangular grid) contained in a circle of diameter n, centered at (1/2, 1/(2*sqrt(3))).
6
0, 0, 3, 6, 12, 21, 30, 42, 54, 69, 90, 102, 129, 150, 174, 198, 225, 258, 288, 327, 354, 396, 435, 471, 522, 558, 609, 654, 702, 759, 807, 864, 924, 981, 1038, 1104, 1173, 1230, 1308, 1368, 1443, 1512, 1590, 1671, 1746, 1830, 1908, 2001, 2076, 2166, 2265
OFFSET
0,3
COMMENTS
In other words, number of points in a hexagonal lattice covered by a circular disk of diameter n if the center of the circle is chosen at the deep hole. - Hugo Pfoertner, Jan 07 2007
Also number of integer coordinate pairs (s,t) satisfying s^2+t^2+st-s-t <= n^2/4-1/3. The a(2)=3 coordinate pairs are (s,t)=(0,0), (0,1) and (1,0). The a(3)=6 coordinate pairs are (-1,1),(0,0),(0,1),(1,-1),(1,0) and (1,1). - R. J. Mathar, Feb 23 2007
FORMULA
a(n)/(n/2)^2 -> Pi*2/sqrt(3).
MAPLE
A053479 := proc(n) local res, a, b ; res :=0 ; for a from -n to n do for b from -n to n do if a^2+b^2+a*b-a-b <= n^2/4-1/3 then res := res+1 ; fi ; od ; od ; RETURN(res) ; end : for n from 1 to 40 do printf("%d ", A053479(n)) ; od ; # R. J. Mathar, Feb 23 2007
MATHEMATICA
cx = 1/2; cy = 1/(2*Sqrt[3]); a[n_] := Sum[ dj = (1/2)* Sqrt[Abs[-3*cx^2 + 2*Sqrt[3]*cx*cy - cy^2 + 6*cx*i - 2*Sqrt[3]*cy*i - 3*i^2 + n^2]]; j1 = cx/2 + (Sqrt[3]*cy)/2 - i/2 - dj // Floor ; j2 = cx/2 + (Sqrt[3]*cy)/2 - i/2 + dj // Ceiling; Sum[Boole[(i + j/2 - cx)^2 + (j*(Sqrt[3]/2) - cy)^2 <= n^2/4], {j, j1, j2}], {i, -(n + 1)/2 - 2 // Floor, (n + 1)/2 + 3 // Ceiling}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 06 2013 *)
KEYWORD
easy,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 14 2000
EXTENSIONS
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
STATUS
approved