login
A053482
Binomial transform of A029767.
4
1, 4, 21, 142, 1201, 12336, 149989, 2113546, 33926337, 611660476, 12243073621, 269456124774, 6468249055921, 168191402251432, 4709596238204901, 141291441773619106, 4521383010795364609, 153727989225714801396, 5534225015581836134677
OFFSET
0,2
COMMENTS
This is the column k=3 of an array T(n,k) = A181783(n,k) defined by T(n,0)=T(0,k)=1 and T(n,k) = n*(k-1)*T(n-1,k) +T(n,k-1), which starts
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46,...
1, 1, 5, 21, 63, 151, 311, 575, 981,1573,2401,...
1, 1, 16, 142, 709,2521,7186,17536,38137,75889,140716,...
1, 1, 65,1201,9709,50045,193765,614629,1682465,4110913,9176689,...
Column k=2 is A000522. The e.g.f. for column k is E_k(z) = E_(k-1)(z)/[1-(k-1)] = exp(z)/prod_{j=1..k-1} (1-j*z). - Richard Choulet, Dec 17 2012
LINKS
FORMULA
E.g.f.: exp(x)*(2/(1-2x)-1/(1-x))=exp(x)/(1-3x+2x^2); a(n)=sum{k=0..n, C(n,k)*k!*(2^(k+1)-1)}; a(n)=n!*sum{k=0..n, (2^(n-k+1)-1)/k!}; a(n)=int(x^n*(exp((1-x)/2)-exp(1-x)),x,1,infty); a(n)=2*A010844(n)-A000522(n); - Paul Barry, Jan 28 2008
Conjecture: a(n) -(3*n+1)*a(n-1) +(2*n+3)*(n-1)*a(n-2) -2*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Sep 29 2012
a(n) = 3*n*a(n-2)-2*n*(n-1)*a(n-2)+1, derived from the array defined in the comment, which proves the previous conjecture. - Richard Choulet, Dec 17 2012
a(n) ~ n! * 2^(n+1)*exp(1/2). - Vaclav Kotesovec, Oct 02 2013
MATHEMATICA
CoefficientList[Series[E^x/(1-3*x+2*x^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 02 2013 *)
CROSSREFS
Sequence in context: A087761 A245503 A120368 * A158577 A006879 A228063
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 15 2000
STATUS
approved