login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181783
Array described in comments to A053482, here read by increasing antidiagonals. See comments below.
4
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 4, 1, 1, 1, 16, 21, 7, 1, 1, 1, 65, 142, 63, 11, 1, 1, 1, 326, 1201, 709, 151, 16, 1, 1, 1, 1957, 12336, 9709, 2521, 311, 22, 1, 1, 1, 13700, 149989, 157971, 50045, 7186, 575, 29, 1, 1, 1, 109601, 2113546, 2993467, 1158871, 193765, 17536, 981, 37, 1
OFFSET
0,9
COMMENTS
We denote by a(n,k) the number in row number n >= 0 and column number k >= 0. The recurrence which defines the array is a(n,k) = n*(k-1)*a(n-1,k) + a(n,k-1). The initial values are given by a(n,0) = 1 = a(0,k) for all n >= 0 and k >= 0.
FORMULA
If we consider the e.g.f. Psi(k) of column number k we have: Psi(k)(z) = Psi(k-1)(z)/(1-(k-1)*z) with Psi(1)(z) = exp(z). Then Psi(k)(z) = exp(z)/Product_{j=0..k-1} (1 - j*z). We conclude that a(n,k) = n!*Sum_{m=0..n} Sum_{j=1..k-1} (-1)^(k-1-j)*j^(m+k-2)/((n-m)!*(j-1)!*(k-1-j)!). It seems after the recurrence (and its proof) in A053482 that:
A(n,k) = -Sum_{j=1..k-1} s1(k,k-j)*n*(n-1)*...*(n-k+1)*a(n-j,k) + 1 where s1(m,n) are the classical Stirling numbers of the first kind.
A(n,1) = 1 for every n.
A(1,k) = 1 + k*(k-1)/2 for every k.
A(n, k+1) = A371898(n+k, k) * n! / ((n+k)! * k!). - Werner Schulte, Apr 14 2024
EXAMPLE
Array read row after row:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 4, 7, 11, 16, ...
1, 1, 5, 21, 63, 151, 311, ...
1, 1, 16, 142, 709, 2521, 7186, ...
1, 1, 65, 1201, 9709, 50045, 193765, ...
1, 1, 326, 12336, 157971, 1158871, 6002996, ...
1, 1, 1957, 149989, 2993467, 30806371, 210896251, ...
...
A(4,3) = 1201.
MAPLE
A181783 := proc(n, k)
option remember;
if n =0 or k = 0 then
1;
else
n*(k-1)*procname(n-1, k)+procname(n, k-1) ;
end if;
end proc:
seq(seq(A181783(d-k, k), k=0..d), d=0..12) ; # R. J. Mathar, Mar 02 2016
MATHEMATICA
T[n_, k_] := T[n, k] = If[n == 0 || k == 0, 1, n (k - 1) T[n - 1, k] + T[n, k - 1]];
Table[T[n - k, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 10 2023 *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Richard Choulet, Dec 23 2012
EXTENSIONS
Edited by N. J. A. Sloane, Dec 24 2012
STATUS
approved