The OEIS is supported by the many generous donors to the OEIS Foundation.



Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181784 Numerators of a series sum related to a game of chance. 1
1, 1, 4, 22, 140, 969, 7084, 53820, 420732, 3782992, 32389076, 275617830, 2350749914, 20140518790, 173429992350, 1500850805160, 14550277251918, 133009333771170, 1198324107797254 (list; graph; refs; listen; history; text; internal format)
Consider a 1-dimensional random walk from 0 with equal-probability steps of Pi and -1. One way to compute the probability of eventually walking below 0 is as the sum over n of the probabilities of becoming negative after a walk with exactly n steps of Pi (n >= 0) and max(ceiling(n*Pi),1) steps of -1. The total number of walks of such length for a given n is 2^(n+max(ceiling(n*Pi),1)), or 2^(n+A004084(n)) (n >= 1), forming a sequence of denominators, and this sequence gives the numerators, the number of possible sequences of length (n+max(ceiling(n*Pi),1)) drawn from {Pi, -1} such that no partial sum except the total sum is < 0.
See the Munafo web page for complete description.
a(n) diverges from A002293 because Pi is not exactly 3.
"My Math Forum" discussion thread, I give, duz... what is it?
"duz" blog entry, Random Walking
Numerators of series sum 1/2 + 1/32 + 4/512 + 22/8192 + 140/131072 + ...
Sequence in context: A216712 A240586 A002293 * A003287 A077056 A227404
Robert Munafo, Dec 21 2010
a(18) from Robert Munafo, Dec 22 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 01:27 EST 2023. Contains 367717 sequences. (Running on oeis4.)