The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240586 Expansion of (((8-8 / sqrt(1-8*x)) / (2*sqrt(8*x+2*sqrt(1-8*x)+2))+4 / sqrt(1-8*x))*((x*(sqrt(8*x+2*sqrt(1-8*x)+2)-sqrt(1-8*x)-1))-4*x^2)) / (sqrt(8*x+2*sqrt(1-8*x)+2)-sqrt(1-8*x)-1)^2. 1
 1, 4, 22, 140, 950, 6692, 48284, 354216, 2630310, 19713188, 148817524, 1130011896, 8621650492, 66043991080, 507628779896, 3913088587472, 30240258982662, 234210742764964, 1817484391184900, 14128074297880536 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 FORMULA a(n) = Sum_{m=1..n} (Sum_{j=0..m} j*(Sum_{k=1..n} (binomial(k, n-k) * binomial(2*k+j-1, k+j-1)) / (k+j))) * (-1)^(j-m) * binomial(m, j))) * binomial(n-1, m-1)). A(x) = B'(x) * (x*B(x)-x^2) / B(x)^2, where B(x) = (-1-sqrt(1-8*x)+sqrt(2+2*sqrt(1-8*x)+8*x))/4, B(x)/x is g.f. of A186997. a(n) ~ 8^(n-1) * (sqrt(3)-1) / sqrt(Pi*n). - Vaclav Kotesovec, Apr 12 2014 MATHEMATICA Rest[CoefficientList[Series[(((8-8 / Sqrt[1-8*x]) / (2*Sqrt[8*x+2*Sqrt[1-8*x]+2])+4 / Sqrt[1-8*x])*((x*(Sqrt[8*x+2*Sqrt[1-8*x]+2]-Sqrt[1-8*x]-1))-4*x^2)) / (Sqrt[8*x+2*Sqrt[1-8*x]+2]-Sqrt[1-8*x]-1)^2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Apr 12 2014 *) PROG (Maxima) a(n):=sum((sum(j*(sum((binomial(k, n-k)*binomial(2*k+j-1, k+j-1)) / (k+j), k, 1, n))*(-1)^(j-m)*binomial(m, j), j, 0, m))*binomial(n-1, m-1), m, 1, n); (PARI) x='x+O('x^50); Vec((((8-8 / sqrt(1-8*x)) / (2*sqrt(8*x+2*sqrt(1-8*x)+2))+4 / sqrt(1-8*x))*((x*(sqrt(8*x+2*sqrt(1-8*x)+2)-sqrt(1-8*x)-1))-4*x^2)) / (sqrt(8*x+2*sqrt(1-8*x)+2)-sqrt(1-8*x)-1)^2) \\ G. C. Greubel, Apr 05 2017 CROSSREFS Sequence in context: A187254 A325453 A216712 * A002293 A181784 A003287 Adjacent sequences:  A240583 A240584 A240585 * A240587 A240588 A240589 KEYWORD nonn AUTHOR Vladimir Kruchinin, Apr 08 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 07:19 EDT 2021. Contains 347469 sequences. (Running on oeis4.)