login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186997
G.f. satisfies: A(x) = 1 + x*A(x)^3 + x^2*A(x)^4.
14
1, 1, 4, 19, 104, 614, 3816, 24595, 162896, 1101922, 7580904, 52878654, 373100272, 2658188524, 19096607120, 138182654595, 1006202473888, 7367648586954, 54214472633064, 400698865376842, 2973344993337520, 22142778865313364
OFFSET
0,3
COMMENTS
a(n-1) is the number of rows with the value false in the truth tables of all bracketed implications with n distinct variables. - Volkan Yildiz, Jul 01 2011
From Peter Bala, Aug 02 2016: (Start)
Conjectures (both checked up to n = 100):
2-adic valuation of a(2*n+1) = 2-adic valuation of Catalan(2*n+1) (= 2-adic valuation of Catalan(n));
2-adic valuation of a(2*n) = 3 + 2-adic valuation of Catalan(n-2) for n >= 2, where Catalan(n) = A000108(n). (End)
a(n) is the number of Dyck paths of semi-length n using only steps U_1 = (4,2), U_2 = (9,3) and D = (1,-1). - Michael D. Weiner, Jun 12 2017
LINKS
Daniel Birmajer, Juan B. Gil, Peter R. W. McNamara and Michael D. Weiner, Enumeration of colored Dyck paths via partial Bell polynomials, arXiv:1602.03550 [math.CO], 2016.
Volkan Yildiz, General combinatorical structure of truth tables of bracketed formulas connected by implication, arXiv preprint arXiv:1205.5595 [math.CO], 2012.
Volkan Yildiz, Notes on algebraic structure of truth tables of bracketed formulae connected by implications, arXiv:2106.04728 [math.CO], 2021. See S(x) p. 3.
FORMULA
G.f.: A(x) = (1/x)*Series_Reversion(x*(1+sqrt(1-4*x-4*x^2))/2).
a(n) = Sum_{k=0..n} binomial(k,n-k)*binomial(n+2*k,n+k)/(n+k+1). - Vladimir Kruchinin, May 12 2011
From Volkan Yildiz, Jul 03 2011: (Start)
Let f(n) = Sum_{i=1..n-1} (2^i*C(i-1)-f(i))*f(n-i), with f(0)=0, f(1)=1, and where C are the Catalan numbers A000108. Then a(n)=f(n+1).
G.f.: (1/x) * (-1-sqrt(1-8*x)+sqrt(2+2*sqrt(1-8*x)+8*x))/4.
For large n, a(n) is asymptotically (3-sqrt(3))/3* 2^(3*n)/sqrt(Pi*n^3), corrected by Vaclav Kotesovec, May 31 2014. (End)
O.g.f. satisfies A(x^2) = 1/x * Series_Reversion( x*(1 - x^2)/(1 + x^4) ). - Peter Bala, Aug 02 2016
D-finite with recurrence n*(n+1)*(2*n+1)*a(n) -n*(28*n^2-27*n+8)*a(n-1) +6*(11*n^3-36*n^2+32*n-5)*a(n-2) +8*(2*n-5)*(14*n^2-52*n+51)*a(n-3) +32*(2*n-5)*(2*n-7)*(n-3)*a(n-4)=0. - R. J. Mathar, Nov 22 2024
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 19*x^3 + 104*x^4 + 614*x^5 + 3816*x^6 + ...
MAPLE
A(x):= 1/x * (-1-sqrt(1-8*x)+sqrt(2+2*sqrt(1-8*x)+8*x))/4 ;
a:= n-> coeff(series(A(x), x, n+2), x, n):
seq(a(n), n=0..20); # Volkan Yildiz, Jul 01 2011
MATHEMATICA
CoefficientList[Series[1/x * (-1-Sqrt[1-8*x]+Sqrt[2+2*Sqrt[1-8*x]+8*x])/4, {x, 0, 20}], x] (* Vaclav Kotesovec, May 31 2014 *)
a[n_] := Sum[Binomial[k, n-k]*Binomial[n+2*k, n+k]/(n+k+1), {k, 1, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 02 2015, after Vladimir Kruchinin *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A^3+x^2*(A+x*O(x^n))^4); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=polcoeff((1/x)*serreverse(x*(1+sqrt(1-4*x-4*x^2 +x^2*O(x^n)))/2), n)}
for(n=0, 25, print1(a(n), ", "))
(Maxima) a(n):=sum((binomial(k, n-k)*binomial(n+2*k, n+k))/(n+k+1), k, 1, n); /* Vladimir Kruchinin, May 12 2011 */
(PARI) x='x+O('x^66); /* that many terms */
Vec(1/x*serreverse((x*(1+sqrt(1-4*x-4*x^2))/2))) /* show terms */ /* Joerg Arndt, May 13 2011 */
CROSSREFS
Cf. A000108.
Sequence in context: A276975 A178302 A292098 * A367239 A062265 A088129
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Mar 01 2011
STATUS
approved