login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186996
G.f. satisfies: A(x) = 1 + x*A(x) + x^2*A(x)^4.
8
1, 1, 2, 6, 20, 72, 273, 1073, 4333, 17869, 74937, 318601, 1370113, 5949201, 26046727, 114857599, 509669295, 2274146599, 10197234215, 45925646367, 207656685443, 942302814363, 4289903653615, 19588180438263, 89685571667763
OFFSET
0,3
COMMENTS
Compare to a g.f. C(x) of Catalan numbers: C(x) = 1 + x*C(x) + x^2*C(x)^3.
LINKS
FORMULA
G.f.: A(x) = (1/x)*Series_Reversion( 2*x^3/(1 - sqrt(1-4*x^2-4*x^3)) ).
G.f. satisfies: A(x) = (1 + x*A(x)) * (1 + x*A(x)^3) / (1 + x*A(x)^2).
Recurrence: 3*(n-2)*n*(2*n-5)*(3*n-2)*(3*n+2)*a(n) = 3*(2*n-5)*(2*n-1)*(18*n^3 - 54*n^2 + 36*n - 5)*a(n-1) + (2*n-3)*(94*n^4 - 564*n^3 + 1222*n^2 - 1128*n + 331)*a(n-2) + 3*(2*n - 5)*(2*n - 1)*(18*n^3 - 108*n^2 + 198*n - 103)*a(n-3) - 3*(n-3)*(n-1)*(2*n-1)*(3*n-11)*(3*n-7)*a(n-4). - Vaclav Kotesovec, Sep 10 2013
a(n) ~ c*d^n/n^(3/2), where d = (9 + 8*sqrt(3) + 4*sqrt(12 + 9*sqrt(3)))/9 = 4.874032512954972962... is the root of the equation 27 - 108*d - 94*d^2 - 108*d^3 + 27*d^4 = 0 and c = sqrt(11/(8*(-44 + sqrt(748 + 891*sqrt(3)))*Pi)) = 0.336422381089368230542882135982348331566666028... - Vaclav Kotesovec, Sep 10 2013, updated Apr 27 2015
a(n) = sum(k=0..n, binomial(3n-2k+1, k)*binomial(k,n-k)*1/(3n-2k+1)). - Michael D. Weiner, Apr 23 2015
G.f.: A(x) = hypergeom([1/4, 1/2, 3/4], [2/3, 4/3], (256/27)*x^2/(x-1)^4)/(1-x). - Robert Israel, Apr 28 2015
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 72*x^5 + 273*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 16*x^3 + 56*x^4 + 208*x^5 + 806*x^6 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 31*x^3 + 114*x^4 + 438*x^5 + 1739*x^6 +...
A(x)^4 = 1 + 4*x + 14*x^2 + 52*x^3 + 201*x^4 + 800*x^5 + 3260*x^6 +...
MAPLE
S:= series(RootOf(y - 1 - x*y - x^2*y^4, y), x, 101):
seq(coeff(S, x, i), i=0..100); # Robert Israel, Apr 23 2015
MATHEMATICA
nmax=20; aa=ConstantArray[0, nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n, {n, 1, j-1}]+koef*x^j; sol=Solve[Coefficient[1 + x*AGF + x^2*AGF^4 - AGF, x, j]==0, koef][[1]]; aa[[j]]=koef/.sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}] (* Vaclav Kotesovec, Sep 10 2013 *)
Table[Sum[Binomial[3n-2k+1, k]*Binomial[k, n-k]/(3n-2k+1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 27 2015 after Michael D. Weiner *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A+x^2*(A+x*O(x^n))^4); polcoeff(A, n)}
(PARI) {a(n)=polcoeff((1/x)*serreverse(2*x^3/(1 - sqrt(1-4*x^2-4*x^3 +x^3*O(x^n)))), n)}
CROSSREFS
Cf. A182454.
Sequence in context: A380211 A071356 A141200 * A186576 A272485 A122737
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 01 2011
STATUS
approved