login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272485
G.f. A(x) satisfies: A(x)^3 = x * A( A(x)^2 + A(x)^3 ).
2
1, 1, 2, 6, 20, 72, 274, 1084, 4413, 18365, 77773, 334065, 1451929, 6373379, 28214851, 125826137, 564736106, 2549004457, 11563003842, 52688331678, 241049183598, 1106818411361, 5098961600041, 23561122837102, 109171473224810, 507136264223327, 2361332083301582, 11018704225690520, 51520180227572593, 241344269535483201, 1132543412040153639, 5323310040423904420
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) satisfies: A( x^3 / A(x^2 + x^3) ) = x.
a(n) ~ c * d^n / n^(3/2), where d = 4.93477240448054430929819... and c = 0.06099488383521219235235... . - Vaclav Kotesovec, May 07 2016
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 72*x^6 + 274*x^7 + 1084*x^8 + 4413*x^9 + 18365*x^10 + 77773*x^11 + 334065*x^12 +...
where A(x)^3 = x * A( A(x)^2 + A(x)^3 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 56*x^6 + 208*x^7 + 808*x^8 + 3244*x^9 + 13354*x^10 + 56060*x^11 + 239080*x^12 + 1032908*x^13 + 4511152*x^14 + 19884256*x^15 +...
A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 31*x^6 + 114*x^7 + 438*x^8 + 1742*x^9 + 7116*x^10 + 29685*x^11 + 125937*x^12 + 541704*x^13 + 2357028*x^14 + 10355984*x^15 +...
A(x^2 + x^3) = x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 6*x^7 + 12*x^8 + 26*x^9 + 56*x^10 + 124*x^11 + 278*x^12 + 632*x^13 + 1454*x^14 + 3378*x^15 + 7918*x^16 + 18694*x^17 + 44427*x^18 + 106175*x^19 + 255031*x^20 + 615320*x^21 + 1490588*x^22 +...
Let B(x) be the series reversion of g.f. A(x), then
B(x) = x - x^2 - x^4 - 2*x^6 - 2*x^7 - 7*x^8 - 11*x^9 - 28*x^10 - 57*x^11 - 134*x^12 - 300*x^13 - 700*x^14 - 1627*x^15 - 3833*x^16 - 9075*x^17 - 21628*x^18 - 51818*x^19 - 124727*x^20 - 301523*x^21 - 731662*x^22 - 1781632*x^23 +...
where B(x) = x^3 / A(x^2 + x^3).
PROG
(PARI) /* From definition A( A(x)^2 + A(x)^3 ) = A(x)^3/x */
{a(n) = my(A=[1, 1, 0]); for(i=1, n, A = concat(A, 0); G=x*Ser(A); A[#A-1] = Vec(x*subst(G, x, G^2 + G^3)/G^3)[#A-1] ); A[n]}
for(n=1, 40, print1(a(n), ", "))
(PARI) /* Using Series Reversion of x^3/A(x^2+x^3) */
{a(n) = my(A=x); for(i=1, n, A = serreverse( x^3/subst(A, x, x^2 + x^3 +x^2*O(x^n))) ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A141200 A186996 A186576 * A122737 A338184 A348351
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 06 2016
STATUS
approved