login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186998
G.f. satisfies: A(x) = Sum_{n>=0} x^n*(1 + x*A(x)^n)^n.
9
1, 1, 2, 4, 11, 35, 123, 462, 1829, 7558, 32380, 143102, 649999, 3026171, 14411412, 70095713, 347817785, 1759198500, 9063638685, 47545501777, 253854457415, 1379172691108, 7623064091313, 42860238300826, 245098499411379, 1425403070154478, 8429327482836740, 50681175605982771
OFFSET
0,3
COMMENTS
Compare g.f. to a g.f. C(x) of the Catalan sequence:
C(x) = Sum_{n>=0} x^n*(1 + x*C(x)^2)^n where C(x) = 1 + x*C(x)^2.
LINKS
FORMULA
G.f. satisfies: A(x) = Sum_{n>=0} x^(2*n) * A(x)^(n^2) / (1 - x*A(x)^n)^(n+1). - Paul D. Hanna, Sep 24 2014
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 35*x^5 + 123*x^6 +...
such that
A(x) = 1 + x*(1+x*A(x)) + x^2*(1+x*A(x)^2)^2 + x^3*(1+x*A(x)^3)^3 + x^4*(1+x*A(x)^4)^4 + x^5*(1+x*A(x)^5)^5 + x^6*(1+x*A(x)^6)^6 +...
The g.f. satisfies the series identity:
A(x) = 1/(1-x) + x^2*A(x)/(1-x*A(x))^2 + x^4*A(x)^4/(1-x*A(x)^2)^3 + x^6*A(x)^9/(1-x*A(x)^3)^4 + x^8*A(x)^16/(1-x*A(x)^4)^5 + x^10*A(x)^25/(1-x*A(x)^5)^6 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*(1+x*(A+x*O(x^n))^m)^m)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, x^(2*k)*A^(k^2)/(1 - x*A^k +x*O(x^n))^(k+1) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 24 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 01 2011
STATUS
approved