login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340338
G.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n / (1 - x^(n+1)*A(x)^(n+1)).
7
1, 2, 4, 11, 35, 121, 444, 1689, 6592, 26258, 106313, 436203, 1809727, 7579202, 31999297, 136050472, 582002281, 2503242025, 10818689627, 46959246659, 204623676444, 894785832949, 3925297799901, 17270153317728, 76187650017660, 336934181461844
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) satisfies the following relations.
(1) A(x) = Sum_{n>=0} x^n / (1 - x^(n+1)*A(x)^(n+1)).
(2) A(x) = Sum_{n>=0} x^n*A(x)^n / (1 - x^(n+1)*A(x)^n).
(3) A(x) = Sum_{n>=0} x^(n^2+2*n) * A(x)^(n^2+n) * (1 - x^(2*n+2)*A(x)^(2*n+1))/((1 - x^(n+1)*A(x)^n)*(1 - x^(n+1)*A(x)^(n+1))).
a(n) ~ c * d^n / n^(3/2), where d = 4.6940696906229278555829659... and c = 0.71283897646430285525... - Vaclav Kotesovec, Jan 07 2021
EXAMPLE
G.f.: A(x) = 1 + 2*x + 4*x^2 + 11*x^3 + 35*x^4 + 121*x^5 + 444*x^6 + 1689*x^7 + 6592*x^8 + 26258*x^9 + 106313*x^10 + ...
where
A(x) = 1/(1 - x*A(x)) + x/(1 - x^2*A(x)^2) + x^2/(1 - x^3*A(x)^3) + x^3/(1 - x^4*A(x)^4) + x^4/(1 - x^5*A(x)^5) + ...
also
A(x) = 1/(1 - x) + x*A(x)/(1 - x^2*A(x)) + x^2*A(x)^2/(1 - x^3*A(x)^2) + x^3*A(x)^3/(1 - x^4*A(x)^3) + x^4*A(x)^4/(1 - x^5*A(x)^4) + ...
MATHEMATICA
(* Calculation of constants {d, c}: *) {1/r, Sqrt[-(1-r)*r*s^2*(-1 + r*s)^2*Log[r*s]^5 * (((1 + ((-1 + r)*(1 + s*(-2 + r - (-1 + r)*r*s) - (-1 + r)*s*(-1 + r*s) * Log[r*s]))/((-1 + r*s)*Log[r]))/ (-1 + r)^2 + (s* Derivative[0, 0, 1][QPolyGamma][0, 1 + Log[r]/Log[r*s], r*s])/Log[r])/ (2* Pi*(r*Log[r*s]^3*(-2 - 2*s*(-2 + r*s)*(1 + (-1 + r)*r*s) + (-1 + r)*s* Log[r*s]*(-5 - 4*r*s*(-2 + r*s) - (-1 + r*s)^2*Log[r*s])) + (-1 + r)*(-1 + r*s)^2*(Log[r]^2* QPolyGamma[2, 1 + Log[r]/Log[r*s], r*s] + r*s*Log[r*s]^2*(Log[r*s]*(2 + Log[r*s])* Derivative[0, 0, 1][QPolyGamma][0, 1 + Log[r]/Log[r*s], r*s] - 2*Log[r]* Derivative[0, 0, 1][QPolyGamma][1, 1 + Log[r]/Log[r*s], r*s] + r*s*Log[r*s]^2* Derivative[0, 0, 2][QPolyGamma][0, 1 + Log[r]/Log[r*s], r*s])))))]} /. FindRoot[{1/(1 - r) + (Log[1 - r*s] + QPolyGamma[0, 1 + Log[r]/Log[r*s], r*s])/(r*Log[r*s]) == s, (1/(-1 + r*s) + Derivative[0, 0, 1][QPolyGamma][0, 1 + Log[r]/Log[r*s], r*s])/ Log[r*s] == 1 + (s - 1/(1 - r))/(s*Log[r*s]) + (Log[r]/(r*s*Log[r*s]^3))* QPolyGamma[1, 1 + Log[r]/Log[r*s], r*s]}, {r, 1/4}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 01 2023 *)
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m / (1 - x^(m+1)*A^(m+1) +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m*A^m / (1 - x^(m+1)*A^m +x*O(x^n)) )); ; polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A071794 A234006 A285002 * A107378 A186998 A243788
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 05 2021
STATUS
approved