OFFSET
0,3
FORMULA
E.g.f.: Sum_{n>=0} x^n * cosh(2^n*x).
E.g.f.: Sum_{n>=0} (x^(2*n)/(2*n)!) / (1 - 2^(2*n)*x).
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 18*x^3/3! + 217*x^4/4! + 4040*x^5/5! + 100561*x^6/6! + 3446128*x^7/7! + 192945537*x^8/8! + 18959667840*x^9/9! + ...
where
A(x) = cosh(x) + x*cosh(2*x) + x^2*cosh(2^2*x) + x^3*cosh(2^3*x) + x^4*cosh(2^4*x) + x^5*cosh(2^5*x) + ...
also
A(x) = 1/(1 - x) + (x^2/2!)/(1 - 2^2*x) + (x^4/4!)/(1 - 2^4*x) + (x^6/6!)/(1 - 2^6*x) + (x^8/8!)/(1 - 2^8*x) + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, n, x^m * cosh(2^m*x +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A = sum(m=0, n\2, x^(2*m)/(2*m)! * 1/(1 - 2^(2*m)*x +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 12 2021
STATUS
approved