login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071605 Number of ordered pairs (a,b) of elements of the symmetric group S_n such that the pair a,b generates S_n. 7
1, 3, 18, 216, 6840, 228960, 15573600, 994533120, 85232891520, 8641918252800, 1068888956889600, 155398203460684800, 26564263279602048000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..13.

L. Babai, The probability of generating the symmetric group, J. Combin. Theory, A52 (1989), 148-153.

J. D. Dixon, The probability of generating the symmetric group, Math. Z. 110 (1969) 199-205.

J. D. Dixon, Problem 923 (BCC20.17), Indecomposable permutations and transitive groups, in Research Problems from the 20th British Combinatorial Conference, Discrete Math., 308 (2008), 621-630.

T. Luczak and L. Pyber, On random generation of the symmetric group, Combin. Probab. Comput., 2 (1993), 505-512.

A. Maroti and C. M. Tamburini, Bounds for the probability of generating the symmetric and alternating groups, Arch. Math. (Basel), 96 (2011), 115-121.

FORMULA

Except for n=2 (because of the "replacement") in A040175, a(n) = n! * A040175(n).

a(n) = 2 * A001691(n) for n > 2.

PROG

(GAP)

a := function(n)

  local tom, mu, lens, orders, num, k;

  tom := TableOfMarks(Concatenation("S", String(n)));

  if tom = fail then tom := TableOfMarks(SymmetricGroup(n)); fi;

  mu :=  MoebiusTom(tom).mu;

  lens := LengthsTom(tom);

  orders := OrdersTom(tom);

  num := 0;

  for k in [1 .. Length(lens)] do

    if IsBound(mu[k]) then

      num := num + mu[k] * lens[k] * orders[k]^2;

    fi;

  od;

  return num;

end; # Stephen A. Silver, Feb 20 2013

CROSSREFS

Cf. A040175, A135474.

Sequence in context: A132727 A111841 A279233 * A222686 A274271 A195765

Adjacent sequences:  A071602 A071603 A071604 * A071606 A071607 A071608

KEYWORD

nonn,more,nice

AUTHOR

Sharon Sela (sharonsela(AT)hotmail.com), Jun 02 2002

EXTENSIONS

a(10)-a(13) added by Stephen A. Silver, Feb 20 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 08:47 EDT 2019. Contains 328292 sequences. (Running on oeis4.)