OFFSET
1,3
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Denes, Some combinatorial properties of transformations and their connections with the theory of graphs, J. Combin. Theory, 9 (1970), 108-116.
FORMULA
a(n) = A071605(n)/2 for n > 2.
PROG
(GAP)
a := function(n)
local tom, mu, lens, orders, num, k;
tom := TableOfMarks(Concatenation("S", String(n)));
if tom = fail then tom := TableOfMarks(SymmetricGroup(n)); fi;
mu := MoebiusTom(tom).mu;
lens := LengthsTom(tom);
orders := OrdersTom(tom);
num := 0;
for k in [1 .. Length(lens)] do
if IsBound(mu[k]) then
num := num + mu[k] * lens[k] * Binomial(orders[k], 2);
fi;
od;
return num;
end; # Stephen A. Silver, Feb 20 2013
CROSSREFS
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(8)-a(9) (derived from A071605) added by Stephen A. Silver, Feb 17 2013
a(10)-a(13) added by Stephen A. Silver, Feb 20 2013
STATUS
approved