login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A001688
4th forward differences of factorial numbers A000142.
(Formerly M4636 N1980)
12
9, 53, 362, 2790, 24024, 229080, 2399760, 27422640, 339696000, 4536362880, 64988179200, 994447238400, 16190733081600, 279499828608000, 5100017213491200, 98087346669312000, 1983334021853184000, 42063950934061056000, 933754193111900160000
OFFSET
0,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
For n>=0 a(n) = n!*(n^4 + 6*n^3 + 17*n^2 + 20*n + 9). - Benoit Cloitre, Jun 10 2004
G.f.: -log(-x+1)+1+2/(x-1)^4*x*(4-3*x+2*x^2). - Simon Plouffe, Master's Thesis, Uqam 1992
E.g.f.: (9 + 8*x + 6*x^2 + x^4)/(1 - x)^5. - Ilya Gutkovskiy, Jan 20 2017
a(n) = (n+5)*a(n-1) - (n-1)*a(n-2) with a(0) = 9 and a(1) = 53. Cf. A095177. - Peter Bala, Jul 22 2021
MATHEMATICA
Table[(n^4 + 6*n^3 + 17*n^2 + 20*n + 9) n!, {n, 0, 20}] (* T. D. Noe, Aug 09 2012 *)
Differences[Range[0, 30]!, 4] (* Harvey P. Dale, Jun 06 2017 *)
PROG
(PARI) a(n)=if(n<0, 0, n!*(n^4 + 6*n^3 + 17*n^2 + 20*n + 9))
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved