OFFSET
0,1
COMMENTS
From Emeric Deutsch, Sep 09 2010: (Start)
a(n) is the number of isolated entries in all permutations of [n+2]. An entry j of a permutation p is isolated if it is not preceded by j-1 and not followed by j+1. For example, the permutation 23178564 has 2 isolated entries: 1 and 4. a(1)=11 because in 123, 1'3'2', 2'1'3', 231', 3'12, and 3'2'1' we have a total of 11 isolated entries (they are marked).
a(n) = Sum_{k>=0} k*A180196(n+2,k). (End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..100
Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
A. van Heemert, Cyclic permutations with sequences and related problems, J. Reine Angew. Math., 198 (1957), 56-72.
FORMULA
a(n) = (n^3 + 3*n^2 + 5*n + 2)*n!. - Mitch Harris, Jul 10 2008
E.g.f.: (2 + 3*x + x^3)/(1 - x)^4. - Ilya Gutkovskiy, Jan 20 2017
MATHEMATICA
Table[(n^3 +3*n^2 +5*n +2) n!, {n, 0, 20}] (* T. D. Noe, Aug 09 2012 *)
PROG
(PARI) {a(n) = (n^3+3*n^2+5*n+2)*n!}; \\ G. C. Greubel, Apr 29 2019
(Magma) [(n^3+3*n^2+5*n+2)*Factorial(n): n in [0..20]]; // G. C. Greubel, Apr 29 2019
(Sage) [(n^3+3*n^2+5*n+2)*factorial(n) for n in (0..20)] # G. C. Greubel, Apr 29 2019
(GAP) List([0..20], n-> (n^3+3*n^2+5*n+2)*Factorial(n)) # G. C. Greubel, Apr 29 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved