login
A001565
3rd differences of factorial numbers.
(Formerly M2004 N0793)
15
2, 11, 64, 426, 3216, 27240, 256320, 2656080, 30078720, 369774720, 4906137600, 69894316800, 1064341555200, 17255074636800, 296754903244800, 5396772116736000, 103484118786048000, 2086818140639232000, 44150769074700288000, 977904962186600448000
OFFSET
0,1
COMMENTS
From Emeric Deutsch, Sep 09 2010: (Start)
a(n) is the number of isolated entries in all permutations of [n+2]. An entry j of a permutation p is isolated if it is not preceded by j-1 and not followed by j+1. For example, the permutation 23178564 has 2 isolated entries: 1 and 4. a(1)=11 because in 123, 1'3'2', 2'1'3', 231', 3'12, and 3'2'1' we have a total of 11 isolated entries (they are marked).
a(n) = Sum_{k>=0} k*A180196(n+2,k). (End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = (n^3 + 3*n^2 + 5*n + 2)*n!. - Mitch Harris, Jul 10 2008
E.g.f.: (2 + 3*x + x^3)/(1 - x)^4. - Ilya Gutkovskiy, Jan 20 2017
MATHEMATICA
Table[(n^3 +3*n^2 +5*n +2) n!, {n, 0, 20}] (* T. D. Noe, Aug 09 2012 *)
PROG
(PARI) {a(n) = (n^3+3*n^2+5*n+2)*n!}; \\ G. C. Greubel, Apr 29 2019
(Magma) [(n^3+3*n^2+5*n+2)*Factorial(n): n in [0..20]]; // G. C. Greubel, Apr 29 2019
(Sage) [(n^3+3*n^2+5*n+2)*factorial(n) for n in (0..20)] # G. C. Greubel, Apr 29 2019
(GAP) List([0..20], n-> (n^3+3*n^2+5*n+2)*Factorial(n)) # G. C. Greubel, Apr 29 2019
CROSSREFS
Cf. A047920.
Cf. A180196.
Sequence in context: A038725 A161947 A349023 * A357845 A199412 A074613
KEYWORD
nonn,easy
STATUS
approved