login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001568 Related to 3-line Latin rectangles.
(Formerly M2171 N0867)
1
1, -1, -1, 2, 49, 629, 6961, 38366, -1899687, -133065253, -6482111309, -281940658286, -10702380933551, -247708227641863, 14512103549430397, 3377044611825908414, 433180638973276282801, 47474992085447610990231 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
REFERENCES
S. M. Kerawala, The asymptotic number of three-deep Latin rectangles, Bull. Calcutta Math. Soc., 39 (1947), 71-72.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. M. Kerawala, The asymptotic number of three-deep Latin rectangles, Bull. Calcutta Math. Soc., 39 (1947), 71-72. [Annotated scanned copy]
S. M. Kerawala, Asymptotic solution of the "Probleme des menages, Bull. Calcutta Math. Soc., 39 (1947), 82-84. [Annotated scanned copy]
PROG
(Sage)
def A001568(N):
a = polygen(QQ, 'a')
R = PowerSeriesRing(a.parent(), 't', default_prec=N + 2)
t = R.gen()
n = 1 / t
dico = {0: 1}
for k in range(1, N + 1):
U = sum(di * t**i / factorial(i) for i, di in dico.items())
U += a * t**k / factorial(k)
U = U.O(k + 2)
delta = -U+(n-1)*(n**2-2*n+2)/n**2/(n-2)*U(t=1/(n-1))+(n**2-2*n+2)/n**2/(n-1)*U(t=1/(n-2))+(n**2-2*n-2)/n**2/(n-1)/(n-2)**2*U(t=1/(n-3))+2*(n*n-5*n+3)/n**2/(n-1)/(n-2)**2/(n-3)*U(t=1/(n-4))-4/n**2/(n-2)**2/(n-3)/(n-4)*U(t=1/(n-5))
dico[k] = delta[k + 1].numerator().roots()[0][0]
return list(dico.values())
# F. Chapoton, Jan 01 2022
CROSSREFS
Sequence in context: A297989 A028479 A189389 * A221134 A243720 A210922
KEYWORD
sign,more
AUTHOR
EXTENSIONS
Signs added by N. J. A. Sloane, Jul 23 2015
More terms from F. Chapoton, Jan 01 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 19:02 EDT 2023. Contains 365581 sequences. (Running on oeis4.)