login
A001569
Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0,2*(1-exp(x))^(1/2)).
(Formerly M2161 N0861)
8
1, -1, -1, 2, 37, 329, 1501, -31354, -1451967, -39284461, -737652869, 560823394, 1103386777549, 82520245792997, 4398448305245905, 168910341581721494, 998428794798272641, -720450682719825322809, -105099789680808769094057, -10594247095804692725600734
OFFSET
0,4
REFERENCES
S. M. Kerawala, Asymptotic solution of the "Probleme des menages", Bull. Calcutta Math. Soc., 39 (1947), 82-84.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. M. Kerawala, Asymptotic solution of the "Probleme des menages, Bull. Calcutta Math. Soc., 39 (1947), 82-84. [Annotated scanned copy]
FORMULA
Let b(n) satisfy (n-2)*b(n) - n*(n-2)*b(n-1) - n*b(n-2) = 0; write b(n) = (n!/e^2)*(1 + Sum_{r>=1} a_r/n^r).
a(n) = n!*Sum_{k=0..n} (-1)^k*Stirling2(n,k)/k!. - Vladeta Jovovic, Jul 17 2006
E.g.f.: 1 + x*(1 - E(0))/(1-x) where E(k) = 1 + 1/(1-x*(k+1))/(k+1)/(1-x/(x-1/E(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 19 2013
E.g.f.: 1 + x*(1 - S)/(1-x) where S = Sum_{k>=0} (1 + 1/(1-x-x*k)/(k+1)) * x^k / Product_{i=0..k-1} (1-x-x*i)*(i+1). - Sergei N. Gladkovskii, Jan 21 2013
MATHEMATICA
m = 20;
B[x_] = BesselI[0, x] + O[x]^(2 m) // Normal;
A[x_] = B[2(1 - E^x)^(1/2)] + O[x]^m;
CoefficientList[A[x], x]*Range[0, m-1]!^2 (* Jean-François Alcover, Oct 26 2019 *)
PROG
(PARI) a(n)=n!*sum(k=0, n, (-1)^k*stirling(n, k, 2)/k!) \\ Charles R Greathouse IV, Apr 18 2016
CROSSREFS
Sequence in context: A078976 A200911 A243101 * A375261 A373618 A092853
KEYWORD
sign,easy
EXTENSIONS
More terms from Vladeta Jovovic, Jul 17 2006
STATUS
approved