The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001567 Fermat pseudoprimes to base 2, also called Sarrus numbers or Poulet numbers. (Formerly M5441 N2365) 347
 341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911, 10261, 10585, 11305, 12801, 13741, 13747, 13981, 14491, 15709, 15841, 16705, 18705, 18721, 19951, 23001, 23377, 25761, 29341 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A composite number n is a Fermat pseudoprime to base b if and only if b^(n-1) == 1 (mod n). Fermat pseudoprimes to base 2 are often simply called pseudoprimes. Theorem: If both numbers q and 2q - 1 are primes (q is in the sequence A005382) and n = q*(2q-1) then 2^(n-1) == 1 (mod n) (n is in the sequence) if and only if q is of the form 12k + 1. The sequence 2701, 18721, 49141, 104653, 226801, 665281, 721801, ... is related. This subsequence is also a subsequence of the sequences A005937 and A020137. - Farideh Firoozbakht, Sep 15 2006 Also, composite odd numbers n such that n divides 2^n - 2 (cf. A006935). It is known that all primes p divide 2^(p-1) - 1. There are only two known numbers n such that n^2 divides 2^(n-1) - 1, A001220(n) = {1093, 3511} Wieferich primes p: p^2 divides 2^(p-1) - 1. 1093^2 and 3511^2 are the terms of a(n). - Alexander Adamchuk, Nov 06 2006 An odd composite number 2n + 1 is in the sequence if and only if multiplicative order of 2 (mod 2n+1) divides 2n. - Ray Chandler, May 26 2008 The Carmichael numbers A002997 are a subset of this sequence. For the Sarrus numbers which are not Carmichael numbers, see A153508. - Artur Jasinski, Dec 28 2008 An odd number n greater than 1 is a Fermat pseudoprime to base b if and only if ((n-1)! - 1)*b^(n-1) == -1 (mod n). - Arkadiusz Wesolowski, Aug 20 2012 The name "Sarrus numbers" is after Frédéric Sarrus, who, in 1819, discovered that 341 is a counterexample to the "Chinese hypothesis" that n is prime if and only if 2^n is congruent to 2 (mod n). - Alonso del Arte, Apr 28 2013 The name "Poulet numbers" appears in Monografie Matematyczne 42 from 1932, apparently because Poulet in 1928 produced a list of these numbers (cf. Miller, 1975). - Felix Fröhlich, Aug 18 2014 Numbers n > 2 such that (n-1)! + 2^(n-1) == 1 (mod n). Composite numbers n such that (n-2)^(n-1) == 1 (mod n). - Thomas Ordowski, Feb 20 2016 The only twin pseudoprimes up to 10^13 are 4369, 4371. - Thomas Ordowski, Feb 12 2016 Theorem (A. Rotkiewicz, 1965): (2^p-1)*(2^q-1) is a pseudoprime if and only if p*q is a pseudoprime, where p,q are different primes. - Thomas Ordowski, Mar 31 2016 Theorem (W. Sierpiński, 1947): if n is a pseudoprime (odd or even), then 2^n-1 is a pseudoprime. - Thomas Ordowski, Apr 01 2016 If 2^n-1 is a pseudoprime, then n is a prime or a pseudoprime (odd or even). - Thomas Ordowski, Sep 05 2016 From Amiram Eldar, Jun 19 2021: (Start) Ore (1948) called these numbers "Numbers with the Fermat property", or, for short, "F numbers". Erdős (1950) called them "almost primes". According to Erdős (1949) and Piza (1954), the term "pseudoprime" was coined by D. H. Lehmer. Named after the French mathematician Pierre de Fermat (1607-1665), or, alternatively, after the Belgian mathematician Paul Poulet (1887-1946), or, the French mathematician Pierre Frédéric Sarrus (1798-1861). (End) REFERENCES Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A12, p. 44-50. George P. Loweke, The Lore of Prime Numbers. New York: Vantage Press (1982), p. 22. Øystein Ore, Number Theory and Its History, McGraw-Hill, 1948. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS N. J. A. Sloane, Table of n, a(n) for n = 1..101629 [The pseudoprimes up to 10^12, from Richard Pinch's web site - see links below] Jonathan Bayless and Paul Kinlaw, Explicit Bounds for the Sum of Reciprocals of Pseudoprimes and Carmichael Numbers, Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.4. Jens Bernheiden, Pseudoprimes (Text in German). John Brillhart, N. J. A. Sloane, J. D. Swift, Correspondence, 1972. Paul Erdős, On the converse of Fermat's theorem, The American Mathematical Monthly, Vol. 56, No. 9 (1949), pp. 623-624; alternative link. Paul Erdős, On almost primes, Amer. Math. Monthly, Vol. 57, No. 6 (1950), pp. 404-407; alternative link. Jan Feitsma, The pseudoprimes below 2^64. William Galway, Tables of pseudoprimes and related data [Includes a file with pseudoprimes up to 2^64.] Richard K. Guy, The strong law of small numbers. Amer. Math. Monthly, Vol. 95, No. 8 (1988), pp. 697-712. [Annotated scanned copy] D. H. Lehmer, Guide to Tables in the Theory of Numbers, Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 48. D. H. Lehmer, Errata for Poulet's table, Math. Comp., Vol. 25, No. 116 (1971), pp. 944-945. D. H. Lehmer, Errata for Poulet's table. [annotated scanned copy] Gérard P. Michon, Pseudoprimes. J. C. P. Miller, On factorization, with a suggested new approach, Math. Comp., Vol. 29, No. 129 (1975), pp. 155-172. - Felix Fröhlich, Aug 18 2014 Robert Morris, Some observations on the converse of Fermat's theorem, unpublished memorandum, Oct 03 1973. Richard Pinch, Pseudoprimes. P. A. Piza, Fermat Coefficients, Mathematics Magazine, Vol. 27, No. 3 (1954), pp. 141-146. Carl Pomerance & N. J. A. Sloane, Correspondence, 1991. Paul Poulet, Tables des nombres composés vérifiant le théorème de Fermat pour le module 2 jusqu'à 100.000.000, Sphinx (Brussels), Vol. 8 (1938), pp. 42-45. [annotated scanned copy] Fred Richman, Primality testing with Fermat's little theorem. Andrzej Rotkiewicz, Sur les nombres pseudopremiers de la forme MpMq, Elemente der Mathematik, Vol. 20 (1965), pp. 108-109. Waclaw Sierpiński, Remarque sur une hypothèse des Chinois concernant les nombres (2^n-2)/n, Colloquium Mathematicum, Vol. 1 (1947), p. 9. Waclaw Sierpiński, Elementary Theory of Numbers, Państ. Wydaw. Nauk., Warszawa, 1964, p. 215. Eric Weisstein's World of Mathematics, Chinese Hypothesis, Fermat Pseudoprime, Poulet Number, and Pseudoprime. Wikipedia, Chinese hypothesis and Pseudoprime. Index entries for sequences related to pseudoprimes FORMULA Sum_{n>=1} 1/a(n) is in the interval (0.015260, 33) (Bayless and Kinlaw, 2017). - Amiram Eldar, Oct 15 2020 MAPLE select(t -> not isprime(t) and 2 &^(t-1) mod t = 1, [seq(i, i=3..10^5, 2)]); # Robert Israel, Feb 18 2016 MATHEMATICA Select[Range[3, 30000, 2], ! PrimeQ[ # ] && PowerMod[2, (# - 1), # ] == 1 &] (* Farideh Firoozbakht, Sep 15 2006 *) PROG (PARI) q=1; vector(50, i, until( !isprime(q) & (1<<(q-1)-1)%q == 0, q+=2); q) \\ M. F. Hasler, May 04 2007 (PARI) is_A001567(n)={Mod(2, n)^(n-1)==1 && !isprime(n) && n>1} \\ M. F. Hasler, Oct 07 2012, updated to current PARI syntax and to exclude even pseudoprimes on Mar 01 2019 (Magma) [n: n in [3..3*10^4 by 2] | IsOne(Modexp(2, n-1, n)) and not IsPrime(n)]; // Bruno Berselli, Jan 17 2013 CROSSREFS Cf. A002997, A005382, A020137, A052155, A083737, A084653, A153508. Cf. A001220 = Wieferich primes p: p^2 divides 2^(p-1) - 1. Cf. A005935, A005936, A005937, A005938, A005939, A020136-A020228 (pseudoprimes to bases 3 through 100). Sequence in context: A337715 A253038 A271873 * A178723 A210993 A346567 Adjacent sequences: A001564 A001565 A001566 * A001568 A001569 A001570 KEYWORD nonn,nice AUTHOR N. J. A. Sloane EXTENSIONS More terms from David W. Wilson, Aug 15 1996 Replacement of broken geocities link by Jason G. Wurtzel, Sep 05 2010 "Poulet numbers" added to name by Joerg Arndt, Aug 18 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 10:18 EDT 2023. Contains 365501 sequences. (Running on oeis4.)