login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337715
Numbers that are the product of two distinct odd numbers x*y such that 2^x (mod y) = 2^y (mod x) = 2.
1
341, 525, 651, 765, 1155, 1387, 1683, 1935, 2047, 2701, 3277, 3751, 4033, 4165, 4305, 4369, 4455, 4681, 5461, 5525, 5715, 6025, 6643, 7161, 7239, 7957, 8265, 8321, 8925, 9471, 9605, 10261, 10571, 10965, 12103, 12325, 13113, 13747, 13981, 14491, 15709, 16275, 16485
OFFSET
1,1
COMMENTS
Equivalently, terms of A176970 that are not square of odd primes. Every square of odd prime p^2 is a term of A176970, because by Fermat's little theorem, for p prime, then 2^p = 2 (mod p).
The super-Poulet numbers (A050217) form a subsequence with 341, 1387, 2047, 2701, ... (see example).
EXAMPLE
For 341 = 11 * 31 that is a super-Poulet:
2^11 (mod 31) = 2^31 (mod 11) = 2, hence 341 is a term;
For 525 = 3 * 5^2 * 7 = 15 * 35 = 21 * 25:
2^15 (mod 35) = 2^35 (mod 15) = 8, but
2^21 (mod 25) = 2^25 (mod 21) = 2, hence, 525 is a term.
MAPLE
test := proc(n) local d, q; if n::odd then for d in NumberTheory:-Divisors(n)
do q := iquo(n, d); if q > d and 2 &^ d mod q = 2 and 2 &^ q mod d = 2 then return true fi od fi; false end: select(test, [$(1..10000)]); # Peter Luschny, Sep 17 2020
MATHEMATICA
okQ[x_, y_] := PowerMod[2, x, y] == PowerMod[2, y, x] == 2 && !PrimeQ[Sqrt[x*y]];
nn = 20000;
Union[Reap[Do[If[x*y < nn && okQ[x, y], Sow[x*y]], {x, 1, nn/3, 2}, {y, x, nn/3, 2}]][[2, 1]]] (* Jean-François Alcover, Sep 29 2024, after Harvey P. Dale in A176970 *)
PROG
(PARI) isok(n) = {if ((n % 2), fordiv(n, d, if ((d > n/d) && (lift(Mod(2, d)^(n/d)) == 2) && (lift(Mod(2, n/d)^d) == 2), return(1)); ); ); } \\ Michel Marcus, Sep 17 2020
CROSSREFS
Subsequence of A176970.
A050217 (super-Poulet) is a subsequence.
Sequence in context: A020188 A025353 A025345 * A253038 A271873 A001567
KEYWORD
nonn
AUTHOR
Bernard Schott, Sep 16 2020
EXTENSIONS
More terms from Amiram Eldar, Sep 16 2020
STATUS
approved