login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050217
Super-Poulet numbers: Poulet numbers whose divisors d all satisfy d|2^d-2.
19
341, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489, 88357, 90751
OFFSET
1,1
COMMENTS
Every semiprime in A001567 is in this sequence (see Sierpiński). a(61) = 294409 is the first term having more than two prime factors. See A178997 for super-Poulet numbers having more than two prime factors. - T. D. Noe, Jan 11 2011
Composite numbers n such that 2^d == 2 (mod n) for every d|n. - Thomas Ordowski, Sep 04 2016
Composite numbers n such that 2^p == 2 (mod n) for every prime p|n. - Thomas Ordowski, Sep 06 2016
Composite numbers n = p(1)^e(1)*p(2)^e(2)*...*p(k)^e(k) such that 2^gcd(p(1)-1,p(2)-1,...,p(k)-1) == 1 (mod n). - Thomas Ordowski, Sep 12 2016
Nonsquarefree terms are divisible by the square of a Wieferich prime (see A001220). These include 1194649, 12327121, 5654273717, 26092328809, 129816911251. - Robert Israel, Sep 13 2016
Composite numbers n such that 2^A258409(n) == 1 (mod n). - Thomas Ordowski, Sep 15 2016
REFERENCES
W. Sierpiński, Elementary Theory of Numbers, Warszawa, 1964, p. 231.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Eric Weisstein's World of Mathematics, Super-Poulet Numbers
MAPLE
filter:= = proc(n)
not isprime(n) and andmap(p -> 2&^p mod n = 2, numtheory:-factorset(n))
end proc:
select(filter, [seq(i, i=3..10^5, 2)]); # Robert Israel, Sep 13 2016
MATHEMATICA
Select[Range[1, 110000, 2], !PrimeQ[#] && Union[PowerMod[2, Rest[Divisors[#]], #]] == {2} & ]
PROG
(PARI) is(n)=if(isprime(n), return(0)); fordiv(n, d, if(Mod(2, d)^d!=2, return(0))); n>1 \\ Charles R Greathouse IV, Aug 27 2016
CROSSREFS
A214305 is a subsequence.
A065341 is a subsequence. - Thomas Ordowski, Nov 20 2016
Sequence in context: A068216 A038473 A276733 * A214305 A086837 A020230
KEYWORD
nonn
STATUS
approved