The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276733 Composite numbers n such that 2^lpf(n) == 2 (mod n), where lpf(n) = A020639(n). 1
 341, 1247, 1387, 2047, 2701, 3277, 3683, 4033, 4369, 4681, 5461, 5963, 7957, 8321, 9017, 9211, 10261, 13747, 14351, 14491, 15709, 17593, 18721, 19951, 20191, 23377, 24929, 25351, 29041, 31417, 31609, 31621, 33227, 35333, 37901, 42799, 45761, 46513, 49141, 49601, 49981 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Super-Poulet numbers A050217 is a subsequence. From Robert Israel, Sep 16 2016: (Start) If p is a Wieferich prime (A001220), p^2 is in this sequence. If p is a non-Wieferich prime, there are terms of the sequence divisible by p iff p < A006530(2^p-2). Is the latter true for all primes p except 2,3,5,7 and 13? (End) LINKS Robert Israel, Table of n, a(n) for n = 1..1000 MAPLE filter:= n -> not isprime(n) and 2 &^ min(numtheory:-factorset(n)) - 2 mod n = 0: select(filter, [seq(i, i=3..100000, 2)]); # Robert Israel, Sep 16 2016 PROG (PARI) lista(nn) = forcomposite(n=2, nn, if (Mod(2, n)^factor(n)[1, 1] == Mod(2, n), print1(n, ", ")); ); \\ Michel Marcus, Sep 16 2016 CROSSREFS Cf. A006530, A020639, A050217. Sequence in context: A348258 A068216 A038473 * A050217 A214305 A086837 Adjacent sequences: A276730 A276731 A276732 * A276734 A276735 A276736 KEYWORD nonn AUTHOR Thomas Ordowski, Sep 16 2016 EXTENSIONS More terms from Michel Marcus, Sep 16 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 06:04 EDT 2024. Contains 371906 sequences. (Running on oeis4.)