The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276731 Number of solutions to y^2 + y == x^3 - 7 (mod p) as p runs through the primes. 1
 2, 3, 5, 8, 11, 8, 17, 26, 23, 29, 35, 26, 41, 35, 47, 53, 59, 62, 62, 71, 80, 62, 83, 89, 116, 101, 116, 107, 107, 113, 107, 131, 137, 116, 149, 170, 143, 188, 167, 173, 179, 188, 191, 170, 197, 188, 224, 251, 227, 251, 233, 239, 224, 251, 257, 263, 269, 242, 251, 281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This elliptic curve corresponds to a weight 2 newform which is an eta-quotient, namely, (eta(3t)*eta(9t))^2, see Theorem 2 in Martin & Ono. a(n) is the number of solutions of the congruence y^2 + y == x^3 - 7 (mod prime(n)), n >= 1. a(n) is also the number of solutions of the congruence y^2 == x^3 - 432 (mod prime(n)), n >= 1. LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 Yves Martin and Ken Ono, Eta-Quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176. EXAMPLE The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used. The solutions (x, y) of y^2 + y == x^3 - 7 (mod prime(n)) begin: n, prime(n), a(n)\  solutions (x, y) 1,   2,       2:   (1, 0), (1, 1) 2,   3,       3:   (0, 1), (1, 0), (1, 2) 3,   5,       5:   (2, 2), (3, 0), (3, 4),                    (4, 1), (4, 3) 4,   7,       8:   (0, 0), (0, 6), (3, 2),                    (3, 4), (5, 2), (5, 4),                    (6, 2), (6, 4) PROG (Ruby) require 'prime' def A(a3, a2, a4, a6, n)   ary = []   Prime.take(n).each{|p|     a = Array.new(p, 0)     (0..p - 1).each{|i| a[(i * i + a3 * i) % p] += 1}     ary << (0..p - 1).inject(0){|s, i| s + a[(i * i * i + a2 * i * i + a4 * i + a6) % p]}   }   ary end def A276731(n)   A(1, 0, 0, -7, n) end CROSSREFS Sequence in context: A023176 A063178 A280205 * A028891 A028890 A189716 Adjacent sequences:  A276728 A276729 A276730 * A276732 A276733 A276734 KEYWORD nonn AUTHOR Seiichi Manyama, Sep 16 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 18:41 EST 2021. Contains 349416 sequences. (Running on oeis4.)