%I #29 Oct 24 2018 08:08:10
%S 2,3,5,8,11,8,17,26,23,29,35,26,41,35,47,53,59,62,62,71,80,62,83,89,
%T 116,101,116,107,107,113,107,131,137,116,149,170,143,188,167,173,179,
%U 188,191,170,197,188,224,251,227,251,233,239,224,251,257,263,269,242,251,281
%N Number of solutions to y^2 + y == x^3 - 7 (mod p) as p runs through the primes.
%C This elliptic curve corresponds to a weight 2 newform which is an eta-quotient, namely, (eta(3t)*eta(9t))^2, see Theorem 2 in Martin & Ono.
%C a(n) is the number of solutions of the congruence y^2 + y == x^3 - 7 (mod prime(n)), n >= 1.
%C a(n) is also the number of solutions of the congruence y^2 == x^3 - 432 (mod prime(n)), n >= 1.
%H Seiichi Manyama, <a href="/A276731/b276731.txt">Table of n, a(n) for n = 1..10000</a>
%H Yves Martin and Ken Ono, <a href="http://dx.doi.org/10.1090/S0002-9939-97-03928-2">Eta-Quotients and Elliptic Curves</a>, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
%e The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used.
%e The solutions (x, y) of y^2 + y == x^3 - 7 (mod prime(n)) begin:
%e n, prime(n), a(n)\ solutions (x, y)
%e 1, 2, 2: (1, 0), (1, 1)
%e 2, 3, 3: (0, 1), (1, 0), (1, 2)
%e 3, 5, 5: (2, 2), (3, 0), (3, 4),
%e (4, 1), (4, 3)
%e 4, 7, 8: (0, 0), (0, 6), (3, 2),
%e (3, 4), (5, 2), (5, 4),
%e (6, 2), (6, 4)
%o (Ruby)
%o require 'prime'
%o def A(a3, a2, a4, a6, n)
%o ary = []
%o Prime.take(n).each{|p|
%o a = Array.new(p, 0)
%o (0..p - 1).each{|i| a[(i * i + a3 * i) % p] += 1}
%o ary << (0..p - 1).inject(0){|s, i| s + a[(i * i * i + a2 * i * i + a4 * i + a6) % p]}
%o }
%o ary
%o end
%o def A276731(n)
%o A(1, 0, 0, -7, n)
%o end
%K nonn
%O 1,1
%A _Seiichi Manyama_, Sep 16 2016