Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Oct 24 2018 08:08:10
%S 2,3,5,8,11,8,17,26,23,29,35,26,41,35,47,53,59,62,62,71,80,62,83,89,
%T 116,101,116,107,107,113,107,131,137,116,149,170,143,188,167,173,179,
%U 188,191,170,197,188,224,251,227,251,233,239,224,251,257,263,269,242,251,281
%N Number of solutions to y^2 + y == x^3 - 7 (mod p) as p runs through the primes.
%C This elliptic curve corresponds to a weight 2 newform which is an eta-quotient, namely, (eta(3t)*eta(9t))^2, see Theorem 2 in Martin & Ono.
%C a(n) is the number of solutions of the congruence y^2 + y == x^3 - 7 (mod prime(n)), n >= 1.
%C a(n) is also the number of solutions of the congruence y^2 == x^3 - 432 (mod prime(n)), n >= 1.
%H Seiichi Manyama, <a href="/A276731/b276731.txt">Table of n, a(n) for n = 1..10000</a>
%H Yves Martin and Ken Ono, <a href="http://dx.doi.org/10.1090/S0002-9939-97-03928-2">Eta-Quotients and Elliptic Curves</a>, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
%e The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used.
%e The solutions (x, y) of y^2 + y == x^3 - 7 (mod prime(n)) begin:
%e n, prime(n), a(n)\ solutions (x, y)
%e 1, 2, 2: (1, 0), (1, 1)
%e 2, 3, 3: (0, 1), (1, 0), (1, 2)
%e 3, 5, 5: (2, 2), (3, 0), (3, 4),
%e (4, 1), (4, 3)
%e 4, 7, 8: (0, 0), (0, 6), (3, 2),
%e (3, 4), (5, 2), (5, 4),
%e (6, 2), (6, 4)
%o (Ruby)
%o require 'prime'
%o def A(a3, a2, a4, a6, n)
%o ary = []
%o Prime.take(n).each{|p|
%o a = Array.new(p, 0)
%o (0..p - 1).each{|i| a[(i * i + a3 * i) % p] += 1}
%o ary << (0..p - 1).inject(0){|s, i| s + a[(i * i * i + a2 * i * i + a4 * i + a6) % p]}
%o }
%o ary
%o end
%o def A276731(n)
%o A(1, 0, 0, -7, n)
%o end
%K nonn
%O 1,1
%A _Seiichi Manyama_, Sep 16 2016