login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A276730
Number of solutions to y^2 == x^3 + 4*x (mod p) as p runs through the primes.
2
2, 3, 7, 7, 11, 7, 15, 19, 23, 39, 31, 39, 31, 43, 47, 39, 59, 71, 67, 71, 79, 79, 83, 79, 79, 103, 103, 107, 103, 127, 127, 131, 159, 139, 135, 151, 135, 163, 167, 199, 179, 199, 191, 207, 199, 199, 211, 223, 227, 199, 207, 239, 271, 251, 255, 263, 295, 271, 295, 271
OFFSET
1,1
COMMENTS
This elliptic curve corresponds to a weight 2 newform which is an eta-quotient, namely, (eta(4t)*eta(8t))^2, see Theorem 2 in Martin & Ono.
It appears that a(n) = prime(n) iff prime(n) == 2 or 3 (mod 4). - Robert Israel, Sep 28 2016 This is true due to the L-function of this elliptic curve. See A278720. - Wolfdieter Lang, Dec 22 2016
The rational solutions of y^2 = x^3 + 4*x are (x,y) = (0,0), (2,4), (2,-4). See the Keith Conrad link, Corollary 3.17., p. 9. - Wolfdieter Lang, Dec 01 2016
For the p-defects p - N(p) see A278720. - Wolfdieter Lang, Dec 22 2016
LINKS
Keith Conrad, Expository papers, Proofs by Descent.
Yves Martin and Ken Ono, Eta-Quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
FORMULA
a(n) is the number of solutions of the congruence y^2 == x^3 + 4*x (mod prime(n)), n >= 1.
a(n) is also the number
of solutions of the congruence y^2 == x^3 - x (mod prime(n)), n >= 1. - Wolfdieter Lang, Dec 22 2016 (See the Cremona link given in A278720).
EXAMPLE
The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used.
The solutions (x, y) of y^2 == x^3 + 4*x (mod prime(n)) begin:
n, prime(n), a(n)\ solutions (x, y)
1, 2, 2: (0, 0), (1, 1)
2, 3, 3: (0, 0), (2, 1), (2, 2)
3, 5, 7: (0, 0), (1, 0), (2, 1),
(2, 4), (3, 2), (3, 3),
(4, 0)
4, 7, 7: (0, 0), (2, 3), (2, 4),
(3, 2), (3, 5), (6, 3),
(6, 4)
...
The solutions (x, y) of y^2 == x^3 - x (mod prime(n)) begin:
n, prime(n), a(n)\ solutions (x, y)
1, 2, 2: (0, 0), (1, 0);
2, 3, 3: (0, 0), (1, 0), (2, 0);
3, 5, 7: (0, 0), (1, 0), (2, 1),
(2, 4), (3, 2), (3, 3),
(4, 0);
4, 7, 7: (0, 0), (1, 0), (4, 2),
(4, 5), (5, 1), (5, 6),
(6, 0);
... - Wolfdieter Lang, Dec 22 2016
MAPLE
seq(nops([msolve(y^2-x^3-4*x, ithprime(n))]), n=1..100); # Robert Israel, Sep 28 2016
PROG
(Ruby)
require 'prime'
def A(a3, a2, a4, a6, n)
ary = []
Prime.take(n).each{|p|
a = Array.new(p, 0)
(0..p - 1).each{|i| a[(i * i + a3 * i) % p] += 1}
ary << (0..p - 1).inject(0){|s, i| s + a[(i * i * i + a2 * i * i + a4 * i + a6) % p]}
}
ary
end
def A276730(n)
A(0, 0, 4, 0, n)
end
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 16 2016
STATUS
approved