login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179894
Given the series (1, 2, 1, 2, 1, 2, ...), let (1 + 2x + x^2 + 2x^3 + ...) * (1 + 2x^2 + x^3 + 2x^4 + ...) = (1 + 2x + 3x^2 + 7x^3 + ...)
1
1, 2, 3, 7, 7, 12, 11, 17, 15, 22, 19, 27, 23, 32, 27, 37, 31, 42, 35, 47, 39, 52, 43, 57, 47, 62, 51, 67, 55, 72, 59, 77, 63, 82, 67, 87, 71, 92, 75, 97, 79, 102, 83, 107, 87, 112, 91, 117, 95, 122, 99, 127, 103, 132, 107, 137, 111, 142, 115, 147, 119, 152, 123, 157, 127, 162
OFFSET
1,2
COMMENTS
The offset has been selected as "1" to accommodate the conjectured property of the sequence: 3 divides a(n) iff n == 0 mod 3. Example: 3 divides (3, 12, 15, 27, 27, 42, ...) but not other terms through n = 18.
FORMULA
(1 + 2x + 3x^2 + 7x^3 + ...) = (1 + 2x + x^2 + 2x^3 + ...) * (1 + 2x^2 + x^3 + 2x^4 + ...).
Let M = a triangle with (1, 2, 1, 2, 1, 2, ...) in every column with the leftmost column shifted upwards one row. Then A179894 = leftmost column of M^2.
a(1)=1; for odd n > 1, a(n) = 2*n - 3; for even n, a(n) = 5*n/2 - 3. So it is true that 3 divides a(n) iff 3 divides n. - Jon E. Schoenfield, Jul 31 2010
From Colin Barker, Oct 28 2012: (Start)
a(n) = ((9 + (-1)^n)*n - 12)/4 for n > 1.
a(n) = 2*a(n-2) - a(n-4) for n > 5.
G.f.: x*(2*x+1)*(x^3+x^2+1)/((x-1)^2*(x+1)^2). (End)
MAPLE
t1:=add(x^(2*n), n=0..50)+2*add(x^(2*n+1), n=0..50);
t2:=2*add(x^(2*n), n=0..50)-1+add(x^(2*n+1), n=0..50)-x;
t3:=t1*t2;
series(t3, x, 100);
seriestolist(%);
CROSSREFS
Sequence in context: A305420 A171464 A276730 * A060215 A309666 A085420
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jul 31 2010
EXTENSIONS
Edited, corrected and extended by N. J. A. Sloane and Jon E. Schoenfield, Sep 06 2010
STATUS
approved