OFFSET
1,2
COMMENTS
The offset has been selected as "1" to accommodate the conjectured property of the sequence: 3 divides a(n) iff n == 0 mod 3. Example: 3 divides (3, 12, 15, 27, 27, 42, ...) but not other terms through n = 18.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
FORMULA
(1 + 2x + 3x^2 + 7x^3 + ...) = (1 + 2x + x^2 + 2x^3 + ...) * (1 + 2x^2 + x^3 + 2x^4 + ...).
Let M = a triangle with (1, 2, 1, 2, 1, 2, ...) in every column with the leftmost column shifted upwards one row. Then A179894 = leftmost column of M^2.
a(1)=1; for odd n > 1, a(n) = 2*n - 3; for even n, a(n) = 5*n/2 - 3. So it is true that 3 divides a(n) iff 3 divides n. - Jon E. Schoenfield, Jul 31 2010
From Colin Barker, Oct 28 2012: (Start)
a(n) = ((9 + (-1)^n)*n - 12)/4 for n > 1.
a(n) = 2*a(n-2) - a(n-4) for n > 5.
G.f.: x*(2*x+1)*(x^3+x^2+1)/((x-1)^2*(x+1)^2). (End)
MAPLE
t1:=add(x^(2*n), n=0..50)+2*add(x^(2*n+1), n=0..50);
t2:=2*add(x^(2*n), n=0..50)-1+add(x^(2*n+1), n=0..50)-x;
t3:=t1*t2;
series(t3, x, 100);
seriestolist(%);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jul 31 2010
EXTENSIONS
Edited, corrected and extended by N. J. A. Sloane and Jon E. Schoenfield, Sep 06 2010
STATUS
approved