login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179897
a(n) = (n^(2*n+1) + 1) / (n+1).
3
1, 1, 11, 547, 52429, 8138021, 1865813431, 593445188743, 250199979298361, 135085171767299209, 90909090909090909091, 74619186937936447687211, 73381705110822317661638341, 85180949465178001182799643437, 115244915978498073437814463065839, 179766618030828831251710653305053711
OFFSET
0,3
COMMENTS
a(n) is the arithmetic mean of the multiset consisting of n lots of 1/n and one lot of n^(2*n+1). This multiset also has an integer valued geometric mean which is equal to n for n > 0.
According to search at OEIS for particular sequence members, a(n) is also: (1+2*n)-th q-integer for q=-n, (2*(n+1))-th cyclotomic polynomial at q=-n, Gaussian binomial coefficient [2*n+1, 2*n] for q=-n, number of walks of length 1+2*n between any two distinct vertices of the complete graph K_(n+1).
FORMULA
a(n) = Sum_{i=0..2*n} (-n)^i.
EXAMPLE
For n = 2, a(2) = 11 which is the arithmetic mean of {1/2, 1/2, 2^5} = 33 / 3 = 11. The geometric mean is 8^(1/3) = 2, i.e. both are integral.
PROG
(Python) [(n**(2*n+1)+1)//(n+1) for n in range(1, 11)]
(PARI) a(n) = (n^(2*n + 1) + 1)/(n + 1) \\ Andrew Howroyd, May 03 2023
CROSSREFS
Main diagonal of A362783.
Values for n = 5, 6 via other ways. Q-integers: A014986, A014987, K_n paths: A015531, A015540, Cyclotomic polynomials: A020504, A020505, Gaussian binomial coefficients: A015391, A015429.
Sequence in context: A233198 A358162 A049654 * A185203 A363460 A376460
KEYWORD
easy,nonn
AUTHOR
Martin Saturka (martin(AT)saturka.net), Jul 31 2010
EXTENSIONS
Edited, a(0)=1 prepended and more terms from Andrew Howroyd, May 03 2023
STATUS
approved