The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014987 a(n) = (1 - (-6)^n)/7. 16
 1, -5, 31, -185, 1111, -6665, 39991, -239945, 1439671, -8638025, 51828151, -310968905, 1865813431, -11194880585, 67169283511, -403015701065, 2418094206391, -14508565238345, 87051391430071, -522308348580425, 3133850091482551 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS q-integers for q=-6. Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,2). - Milan Janjic, Jan 27 2010 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Index entries for linear recurrences with constant coefficients, signature (-5,6). FORMULA a(n) = a(n-1) + q^(n-1) = (q^n - 1) / (q - 1). G.f.: x/((1+6*x)*(1-x)). a(n) = -5*a(n-1) + 6*a(n-2). - Vincenzo Librandi Oct 22 2012 E.g.f.: (exp(x) - exp(-6*x))/7. - G. C. Greubel, Ma7 26 2018 MAPLE a:=n->sum ((-6)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008 MATHEMATICA LinearRecurrence[{-5, 6}, {1, -5}, 30] (* Vincenzo Librandi Oct 22 2012 *) PROG (Sage) [gaussian_binomial(n, 1, -6) for n in range(1, 22)] # Zerinvary Lajos, May 28 2009 (MAGMA) I:=[1, -5]; [n le 2 select I[n] else -5*Self(n-1)+6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012 (PARI) a(n)=(1-(-6)^n)/7 \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Absolute values are in A015540. Cf. A077925, A014983, A014985, A014986, A014989-A014994. Sequence in context: A057426 A329014 A015540 * A108079 A164038 A260782 Adjacent sequences:  A014984 A014985 A014986 * A014988 A014989 A014990 KEYWORD sign,easy AUTHOR EXTENSIONS Better name from Ralf Stephan, Jul 14 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 01:46 EST 2020. Contains 331229 sequences. (Running on oeis4.)