login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014986 a(n) = (1 - (-5)^n)/6. 13
1, -4, 21, -104, 521, -2604, 13021, -65104, 325521, -1627604, 8138021, -40690104, 203450521, -1017252604, 5086263021, -25431315104, 127156575521, -635782877604, 3178914388021, -15894571940104, 79472859700521 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

q-integers for q = -5.

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 27 2010

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (-4,5).

FORMULA

a(n) = a(n-1) + q^(n-1) = (q^n - 1) / (q - 1).

G.f.: x/((1-x)*(1+5*x)). - Bruno Berselli, Dec 07 2011

a(n) = -4*a(n-1) + 5*a(n-2). - Vincenzo Librandi, Jun 19 2012

MAPLE

a:=n->sum ((-5)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008

MATHEMATICA

LinearRecurrence[{-4, 5}, {1, -4}, 30] (* Vincenzo Librandi, Jun 19 2012 *)

PROG

(Sage) [gaussian_binomial(n, 1, -5) for n in xrange(1, 22)] # Zerinvary Lajos, May 28 2009

(PARI) a(n)=(1-(-5)^n)/6 \\ Charles R Greathouse IV, Dec 07 2011

(MAGMA) I:=[1, -4]; [n le 2 select I[n] else -4*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 19 2012

CROSSREFS

Cf. A077925, A014983, A014985, A014987, A014989, A014990, A014991, A014992, A014993, A014994.

Sequence in context: A113022 A291184 * A015531 A083425 A183367 A100237

Adjacent sequences:  A014983 A014984 A014985 * A014987 A014988 A014989

KEYWORD

sign,easy

AUTHOR

Olivier Gérard

EXTENSIONS

Better name from Ralf Stephan, Jul 14 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 11:21 EST 2018. Contains 299564 sequences. (Running on oeis4.)