login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014991 a(n) = (1 - (-9)^n)/10. 8
1, -8, 73, -656, 5905, -53144, 478297, -4304672, 38742049, -348678440, 3138105961, -28242953648, 254186582833, -2287679245496, 20589113209465, -185302018885184, 1667718169966657, -15009463529699912 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

q-integers for q = -9.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (-8,9).

FORMULA

a(n) = a(n-1) + q^(n-1) = (q^n - 1) / (q - 1).

a(0)=1, a(1)=-8, a(n) = -8*a(n-1) + 9*a(n-2). - Harvey P. Dale, Aug 08 2011

G.f.: x/((1 - x)*(1 + 9*x)). - Vincenzo Librandi, Oct 22 2012

E.g.f.: (exp(x) - exp(-9*x))/10. - G. C. Greubel, May 26 2018

MAPLE

a:=n->sum ((-9)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008

MATHEMATICA

((-9)^Range[30]-1)/-10 (* or *) LinearRecurrence[{-8, 9}, {1, -8}, 30] (* Harvey P. Dale, Aug 08 2011 *)

CoefficientList[Series[1/((1 - x)*(1 + 9*x)), {x, 0, 30}], x]; (* Vincenzo Librandi, Oct 22 2012 *)

PROG

(Sage) [gaussian_binomial(n, 1, -9) for n in range(1, 19)] # Zerinvary Lajos, May 28 2009

(Magma) I:=[1, -8]; [n le 2 select I[n] else -8*Self(n-1)+9*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012

(PARI) for(n=1, 30, print1((1-(-9)^n)/10, ", ")) \\ G. C. Greubel, May 26 2018

CROSSREFS

Cf. A077925, A014983, A014985-A014987, A014989-A014994. - Zerinvary Lajos, Dec 16 2008

Sequence in context: A282786 A241630 A153482 * A015577 A293151 A082764

Adjacent sequences: A014988 A014989 A014990 * A014992 A014993 A014994

KEYWORD

sign,easy

AUTHOR

Olivier Gérard

EXTENSIONS

Better name from Ralf Stephan, Jul 14 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 04:41 EDT 2023. Contains 361434 sequences. (Running on oeis4.)