login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077925 Expansion of 1/((1-x)*(1+2*x)). 43
1, -1, 3, -5, 11, -21, 43, -85, 171, -341, 683, -1365, 2731, -5461, 10923, -21845, 43691, -87381, 174763, -349525, 699051, -1398101, 2796203, -5592405, 11184811, -22369621, 44739243, -89478485, 178956971, -357913941, 715827883, -1431655765, 2863311531, -5726623061 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n+1) is the reflection of a(n) through a(n-1) on the numberline. - Floor van Lamoen, Aug 31 2004

If a zero is added as the (new) a(0) in front, the sequence represents the inverse binomial transform of A001045. Partial sums are in A077898. - R. J. Mathar, Aug 30 2008

a(n) = A077953(2*n+3). - Reinhard Zumkeller, Oct 07 2008

Related to the Fibonacci sequence by an INVERT transform: if A(x) = 1+x^2*g(x) is the generating function of the a(n) prefixed with 1, 0, then 1/A(x) = 2+(x+1)/(x^2-x+1) is the generating function of 1, 0, -1, 1, -2, 3, ..., the signed Fibonacci sequence A000045 prefixed with 1. - Gary W. Adamson, Jan 07 2011

Also: Gaussian binomial coefficients [n+1,1], or q-integers, for q=-2, diagonal k=1 in the triangular (or column r=1 in the square) array A015109. - M. F. Hasler, Nov 04 2012

With a leading zero, 0, 1, -1, 3, -5, 11, -21, 43, -85, 171, -341, 683,.. we obtain the Lucas U(-1,-2) sequence. - R. J. Mathar, Jan 08 2013

Let m = a(n). Then 18*m^2 - 12*m + 1 = A000225(2n+3). - Roderick MacPhee, Jan 17 2013

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Wikipedia, Lucas sequence

Index entries for linear recurrences with constant coefficients, signature (-1,2)

Index entries related to Gaussian binomial coefficients.

Index entries for Lucas sequences

FORMULA

G.f.: 1/(1+x-2*x^2).

a(n) = (1-(-2)^(n+1))/3. - Vladeta Jovovic, Apr 17 2003

a(n) = Sum_{k=0..n} (-2)^k. - Paul Barry, May 26 2003

a(n+1) - a(n) = A122803(n). - R. J. Mathar, Aug 30 2008

a(n) = Sum_{k=0..n} A112555(n,k)*(-2)^k. - Philippe Deléham, Sep 11 2009

a(n) = A082247(n+1) - 1. - Philippe Deléham, Oct 07 2009

G.f.: Q(0)/(3*x), where Q(k)= 1 - 1/(4^k - 2*x*16^k/(2*x*4^k + 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k - 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 22 2013

G.f.: Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k-1 + 2*x)/( x*(4*k+1 + 2*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013

E.g.f.: (2*exp(-2*x) + exp(x))/3. - Ilya Gutkovskiy, Nov 12 2016

a(n) = A086893(n+2) - A061547(n+3), n>=0. - Yosu Yurramendi, Jan 16 2017

EXAMPLE

G.f. = 1 - x + 3*x^2 - 5*x^3 + 11*x^4 - 21*x^5 + 43*x^6 - 85*x^7 + ...

MAPLE

a:=n->sum ((-2)^j, j=0..n): seq(a(n), n=0..35); # Zerinvary Lajos, Dec 16 2008

MATHEMATICA

CoefficientList[Series[(1 - x)^(-1)/(1 + 2 x), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)

PROG

(Sage) [gaussian_binomial(n, 1, -2) for n in range(1, 35)] # Zerinvary Lajos, May 28 2009

(MAGMA) [(1-(-2)^(n+1))/3: n in [0..40]]; // Vincenzo Librandi, Jun 21 2011

(PARI) a(n)=(1+(-2)^n*2)/3 \\ Charles R Greathouse IV, Jun 21 2011

CROSSREFS

Cf. A001045 (unsigned version).

Cf. A014983, A014985, A014986. - Zerinvary Lajos, Dec 16 2008

Cf. A232600, A232601, A232602.

Sequence in context: A328284 A167167 A001045 * A152046 A283642 A284426

Adjacent sequences:  A077922 A077923 A077924 * A077926 A077927 A077928

KEYWORD

sign,easy,changed

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 05:36 EST 2019. Contains 329978 sequences. (Running on oeis4.)