login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232600
a(n) = Sum_{k=0..n} k^p*q^k, where p=1, q=-2.
12
0, -2, 6, -18, 46, -114, 270, -626, 1422, -3186, 7054, -15474, 33678, -72818, 156558, -334962, 713614, -1514610, 3203982, -6757490, 14214030, -29826162, 62448526, -130489458, 272163726, -566697074, 1178133390, -2445745266, 5070447502, -10498808946, 21713445774
OFFSET
0,2
FORMULA
a(n) = 2*( (3*n+1)*(-2)^n - 1 )/9.
abs(a(n)) = 2*A045883(n) = A140960(n).
From Bruno Berselli, Nov 28 2013: (Start)
G.f.: -2*x / ((1 - x)*(1 + 2*x)^2). [corrected by Georg Fischer, May 11 2019]
a(n) = -3*a(n-1) +4*a(n-3). (End)
From G. C. Greubel, Mar 31 2021: (Start)
E.g.f.: (2/9)*(-exp(x) + (1-6*x)*exp(-2*x)).
a(n) = 2*(-1)^n*A045883(n). (End)
EXAMPLE
a(3) = 0^1*2^0 - 1^1*2^1 + 2^1*2^2 - 3^1*2^3 = -18.
MAPLE
A232600:= n-> 2*((-2)^n*(3*n+1) -1)/9; seq(A232600(n), n=0..30); # G. C. Greubel, Mar 31 2021
MATHEMATICA
Table[2((3n+1)(-2)^n -1)/9, {n, 0, 30}] (* Bruno Berselli, Nov 28 2013 *)
PROG
(PARI) a(n)=-((3*n+1)*(-2)^(n+1)+2)/9;
(Magma) [2*((-2)^n*(3*n+1) -1)/9: n in [0..30]]; // G. C. Greubel, Mar 31 2021
(Sage) [2*((-2)^n*(3*n+1) -1)/9 for n in (0..30)] # G. C. Greubel, Mar 31 2021
CROSSREFS
Cf. A045883, A140960 (absolute values), A059841 (p=0, q=-1), A130472 (p=1 ,q=-1), A089594 (p=2, q=-1), A232599 (p=3, q=-1), A126646 (p=0, q=2), A036799 (p=1, q=2), A036800 (p=q=2), A036827 (p=3, q=2), A077925 (p=0, q=-2), A232601 (p=2, q=-2), A232602 (p=3, q=-2), A232603 (p=2, q=-1/2), A232604 (p=3, q=-1/2).
Cf. A045883.
Sequence in context: A341490 A308305 A054136 * A140960 A072827 A248169
KEYWORD
sign,easy
AUTHOR
Stanislav Sykora, Nov 27 2013
STATUS
approved