login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140960
a(n) = (2*(-1)^n - 2^(n+1) + 3*n*2^n)/9.
4
0, 0, 2, 6, 18, 46, 114, 270, 626, 1422, 3186, 7054, 15474, 33678, 72818, 156558, 334962, 713614, 1514610, 3203982, 6757490, 14214030, 29826162, 62448526, 130489458, 272163726, 566697074, 1178133390, 2445745266, 5070447502, 10498808946, 21713445774, 44858547314
OFFSET
0,3
COMMENTS
Specify that a triangle has T(n,0) = T(n,n) = A001045(n), and T(r,c) = T(r-1,c-1) + T(r-1,c). The sum of the terms in the first n rows is a(n+1). - J. M. Bergot, May 21 2013
a(n) is the difference between the total number of runs of equal parts in the compositions of n+1, and the compositions of n+1. - Gregory L. Simay, May 04 2017
FORMULA
a(n+1) - 2*a(n) = A078008(n+1) = 2*A001045(n).
G.f.: 2*x^2/((1+x)*(1-2*x)^2).
a(n) = 2*A045883(n-1).
a(n) = 3*a(n-1) - 4*a(n-3), n > 2.
a(n) = A059570(n+1) - A011782(n+1). - Gregory L. Simay, May 04 2017
MATHEMATICA
LinearRecurrence[{3, 0, -4}, {0, 0, 2}, 40] (* Harvey P. Dale, Apr 14 2015 *)
PROG
(Magma) [( 2*(-1)^n-2^(n+1)+3*n*2^n)/9: n in [0..40]]; // Vincenzo Librandi, Aug 08 2011
(PARI) a(n)=(2*(-1)^n-2^(n+1)+3*n*2^n)/9 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
Sequence in context: A308305 A054136 A232600 * A072827 A248169 A002529
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jul 26 2008
EXTENSIONS
Definition replaced with Lava's closed form of August 2008 by R. J. Mathar, Feb 11 2010
STATUS
approved