login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140959
Number of distinct-digit primes in base n.
0
0, 1, 6, 6, 31, 130, 632, 4418, 34401, 283086, 2586883, 28637741, 336810311
OFFSET
1,3
EXAMPLE
a(1) = 0; a(2) = 1 since only the prime 2 in base 2 has distinct integers, 10_2;
a(3) = 6 since the primes {2, 3, 5, 7, 11 & 19} in base 3 have distinct integers, {2_3, 10_3, 12_3, 21_3, 102_3, 201_3}; etc.
a(10) = 283086 because it is the partial sum of A073532.
MATHEMATICA
f[b_] := Block[{c = 0, k = 1, lmt = b^b}, While[p = Prime@ k; p < lmt, k++; If[ Union[ Length /@ Split@ Sort@ IntegerDigits[p, b]] == {1}, c++ ]]; c]; Array[f, 6]
PROG
(Sage)
def a(n):
return sum(len(p.digits(n)) == len(set(p.digits(n))) for p in prime_range(n^n)) # Eric M. Schmidt, Oct 26 2014
(Python)
from sympy import isprime
from itertools import permutations
def a(n):
digs = "".join(str(i) for i in range(min(10, n)))
if n > 10: digs += "".join(chr(ord("A")+i) for i in range(n-10))
return sum(1 for i in range(1, n+1) for p in permutations(digs, i) if p[0] != '0' and isprime(int("".join(p), n)) )
print([a(n) for n in range(1, 10)]) # Michael S. Branicky, Dec 25 2021
CROSSREFS
Cf. A073532.
Sequence in context: A321528 A074002 A359741 * A015699 A244416 A165827
KEYWORD
nonn,base,hard,more
AUTHOR
Robert G. Wilson v, Jul 25 2008
EXTENSIONS
a(11)-a(12) from Eric M. Schmidt, Oct 29 2014
a(13) from Michael S. Branicky, Dec 25 2021
STATUS
approved