login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359741
Number of n-step self-avoiding walks on a 3D cubic lattice whose end-to-end distance is an integer.
3
1, 6, 6, 30, 78, 1134, 1350, 20574, 23238, 390606, 496998, 7614750, 10987926, 152120934, 237122526, 3110708214, 5017927638, 64718847438, 105210653478, 1362453235998
OFFSET
0,2
COMMENTS
The walks counted are all those directly along and x, y or z axes, and all walks whose final (x,y,z) lattice point is a solution to the Pythagorean quadruple x^2 + y^2 + z^2 = t^2. The first such solution with all coordinates > 0 is 1^2 + 2^2 + 2^2 = 3^2, which explains the large increase in the number of walks from a(4) to a(5).
EXAMPLE
a(3) = 30 as, in the first octant, there is one 3-step SAW whose end-to-end distance is an integer (1 unit):
.
X---.
|
X---.
.
This can be walked in 24 different ways on a 3D cubic lattice. There are also the six walks directly along the x, y and z axes, giving a total of 24 + 6 = 30 walks.
CROSSREFS
KEYWORD
nonn,walk,more
AUTHOR
Scott R. Shannon, Jan 12 2023
STATUS
approved