login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118313
Sum of squared end-to-end distances of all n-step self-avoiding walks on the simple cubic lattice.
6
0, 6, 72, 582, 4032, 25566, 153528, 886926, 4983456, 27401502, 148157880, 790096950, 4166321184, 21760624254, 112743796632, 580052260230, 2966294589312, 15087996161382, 76384144381272, 385066579325550, 1933885653380544, 9679153967272734, 48295148145655224, 240292643254616694, 1192504522283625600, 5904015201226909614, 29166829902019914840, 143797743705453990030, 707626784073985438752, 3476154136334368955958, 17048697241184582716248, 83487969681726067169454, 408264709609407519880320, 1993794711631386183977574, 9724709261537887936102872, 47376158929939177384568598, 230547785968352575619933376
OFFSET
0,2
COMMENTS
Number of walks is A001412(n).
a(5) is 25556 according to MacDonald et al., but 25566 according to Clisby et al. and is therefore conjectural for now. - R. J. Mathar, Aug 31 2007
Confirmed that a(5) is 25566 [from Nathan Clisby].Right-hand column, table, p.5 of Schram.
LINKS
R. D. Schram, G. T. Barkema, R. H. Bisseling, Table of n, a(n) for n = 0..36
N. Clisby, R. Liang and G. Slade Self-avoiding walk enumeration via the lace expansion J. Phys. A: Math. Theor. vol. 40 (2007) p 10973-11017, Table A5 for n<=30.
A. J. Guttmann, On the critical behavior of self-avoiding walks, J. Phys. A 20 (1987), 1839-1854.
D. MacDonald, S. Joseph, D. L. Hunter, L. L. Mosley, N. Jan and A. J. Guttmann, Self-avoiding walks on the simple cubic lattice,J Phys A: Math Gen 33 (2000) No 34, 5973-5983
Raoul D. Schram, Gerard T. Barkema, Rob H. Bisseling, Exact enumeration of self-avoiding walks, J Stat. Mech. (2011) P06019.
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, May 14 2006
EXTENSIONS
a(5) corrected by Nathan Clisby, Nov 24 2010
a(14), a(22) corrected by Hugo Pfoertner, Aug 13 2011
STATUS
approved