login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001412
Number of n-step self-avoiding walks on cubic lattice.
(Formerly M4202 N1754)
52
1, 6, 30, 150, 726, 3534, 16926, 81390, 387966, 1853886, 8809878, 41934150, 198842742, 943974510, 4468911678, 21175146054, 100121875974, 473730252102, 2237723684094, 10576033219614, 49917327838734, 235710090502158, 1111781983442406, 5245988215191414, 24730180885580790, 116618841700433358, 549493796867100942, 2589874864863200574, 12198184788179866902, 57466913094951837030, 270569905525454674614
OFFSET
0,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, section 5.10, pp. 331-339.
B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. D. Schram, G. T. Barkema, and R. H. Bisseling, Table of n, a(n) for n = 0..36
N. Clisby, Enumerative combinatorics of lattice polymers, Notices AMS, 68:4 (2021), 504-515. (Excellent survey)
N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion, J. Phys. A: Math. Theor. 40 (2007), 10973-11017, Table A5 for n<=30.
M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
A. J. Guttmann, On the critical behavior of self-avoiding walks, J. Phys. A 20 (1987), 1839-1854.
B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.
D. S. McKenzie and C. Domb, The second osmotic virial coefficient of athermal polymer solutions, Proceedings of the Physical Society, 92 (1967) 632-649.
A. M. Nemirovsky, Karl F. Freed, Takao Ishinabe, and Jack F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
Raoul D. Schram, Gerard T. Barkema, and Rob H. Bisseling, Exact enumeration of self-avoiding walks, arXiv:1104.2184 [math-ph], 2011.
Nobu C. Shirai and Naoyuki Sakumichi, Negative Energetic Elasticity of Lattice Polymer Chain in Solvent, arXiv:2202.12483 [cond-mat.soft], 2022.
M. F. Sykes, Self-avoiding walks on the simple cubic lattice, J. Chem. Phys., 39 (1963), 410-411.
M. F. Sykes, A. J. Guttmann, M. G. Watts, and P. D. Roberts, The asymptotic behavior of self-avoiding walks and returns on a lattice, J. Phys. A 5 (1972), 653-660.
M. F. Sykes, D. S. McKenzie, M. G. Watts, and J. L. Martin, The number of self-avoiding rings on a lattice, J. Phys. A 5 (1972), 661-666.
MATHEMATICA
mo = {{1, 0, 0}, {-1, 0, 0}, {0, 1, 0}, {0, -1, 0}, {0, 0, 1}, {0, 0, -1}}; a[0] = 1;
a[tg_, p_: {{0, 0, 0}}] := Block[{e, mv = Complement[Last[p] + # & /@ mo, p]},
If[tg == 1, Return[Length@mv], Sum[a[tg - 1, Append[p, e]], {e, mv}]]];
a /@ Range[0, 8]
(* Robert FERREOL, Nov 30 2018, after the program of Giovanni Resta in A001411 *)
PROG
(Python)
def add(L, x):
M=[y for y in L]; M.append(x)
return(M)
plus=lambda L, M : [x+y for x, y in zip(L, M)]
mo=[[1, 0, 0], [-1, 0, 0], [0, 1, 0], [0, -1, 0], [0, 0, 1], [0, 0, -1]]
def a(n, P=[[0, 0, 0]]):
if n==0: return(1)
mv1 = [plus(P[-1], x) for x in mo]
mv2=[x for x in mv1 if x not in P]
if n==1: return(len(mv2))
else: return(sum(a(n-1, add(P, x)) for x in mv2))
[a(n) for n in range(8)]
# Robert FERREOL, Nov 30 2018
CROSSREFS
KEYWORD
nonn,walk,nice
STATUS
approved