The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001411 Number of n-step self-avoiding walks on square lattice.
(Formerly M3448 N1402)
1, 4, 12, 36, 100, 284, 780, 2172, 5916, 16268, 44100, 120292, 324932, 881500, 2374444, 6416596, 17245332, 46466676, 124658732, 335116620, 897697164, 2408806028, 6444560484, 17266613812, 46146397316, 123481354908, 329712786220, 881317491628 (list; graph; refs; listen; history; text; internal format)



B. Bollobas and O. Riordan, Percolation, Cambridge, 2006, see p. 15.

Steven R. Finch, Mathematical Constants, Cambridge, 2003, section 5.10, pp. 331-338.

B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 461.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


N. J. A. Sloane, Hugo Pfoertner, Table of n, a(n) for n = 0..79 (from the Jensen links below)

H. Bottomley, Illustration of initial terms

A. R. Conway et al., Algebraic techniques for enumerating self-avoiding walks on the square lattice, J. Phys A 26 (1993) 1519-1534.

A. R. Conway et al., Algebraic techniques for enumerating self-avoiding walks on the square lattice, arXiv:hep-lat/9211062, 1992.

Steven R. Finch, Self-Avoiding-Walk Connective Constants

M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.

A. J. Guttmann, On the critical behavior of self-avoiding walks, J. Phys. A 20 (1987), 1839-1854.

A. J. Guttmann and A. R. Conway, Self-Avoiding Walks and Polygons, Annals of Combinatorics 5 (2001) 319-345.

B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.

I. Jensen, Series Expansions for Self-Avoiding Walks

Iwan Jensen, A new transfer-matrix algorithm for exact enumerations: self-avoiding walks on the square lattice, arXiv:1309.6709 [math-ph], 26 Sep 2013.

D. Randall, Counting in Lattices: Combinatorial Problems from Statistical Mechanics, PhD Thesis.

D. Randall, Counting in Lattices: Combinatorial Problems from Statistical Mechanics, PhD Thesis, 1994.

G. Slade, Self-avoiding walks, Math. Intelligencer, 16 (No. 1, 1994), 29-35.

M. F. Sykes, Some counting theorems in the theory of the Ising problem and the excluded volume problem, J. Math. Phys., 2 (1961), 52-62.

M. F. Sykes et al., The asymptotic behavior of selfavoiding walks and returns on a lattice, J. Phys. A 5 (1972), 653-660.



extend:=proc(L) local L1, U, X, res:

   U:=[[1, 0], [0, 1], [-1, 0], [0, -1]]:

   res:=NULL:for X in U do L1:=[op(L), L[nops(L)]+X]:

   if noloop(L1) then res:=res, L1 fi od:

   return(res) end:

walks:={[[0, 0]]}: A001411:=1:

to 12 do walks:=map(x->extend(x), walks): A001411:=A001411, nops(walks) od:


# Robert FERREOL, Mar 29 2019


mo=Tuples[{-1, 1}, 2]; a[0]=1; a[tg_, p_:{{0, 0}}] := Block[{e, mv = Complement[Last[p]+# & /@ mo, p]}, If[tg == 1, Length@mv, Sum[a[tg-1, Append[p, e]], {e, mv}]]]; a /@ Range[0, 10] (* Giovanni Resta, May 06 2016 *)



def add(L, x):

    M=[y for y in L]; M.append(x)


plus=lambda L, M : [x+y for x, y in zip(L, M)]

mo=[[1, 0], [0, 1], [-1, 0], [0, -1]]

def a(n, P=[[0, 0]]):

    if n==0: return(1)

    mv1=[plus(P[-1], x) for x in mo]

    mv2=[x for x in mv1 if x not in P]

    if n==1: return(len(mv2))

    else: return(sum(a(n-1, add(P, x)) for x in mv2))

[a(n) for n in range(11)]

# Robert FERREOL, Nov 30 2018; after the Mathematica program.


Twice A002900.

Sequence in context: A294782 A002906 A191756 * A095350 A084776 A162921

Adjacent sequences:  A001408 A001409 A001410 * A001412 A001413 A001414




N. J. A. Sloane, A. J. Guttmann (tonyg(AT)maths.mu.OZ.AU)



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 22:05 EDT 2021. Contains 348095 sequences. (Running on oeis4.)