Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Dec 25 2021 14:30:12
%S 0,1,6,6,31,130,632,4418,34401,283086,2586883,28637741,336810311
%N Number of distinct-digit primes in base n.
%e a(1) = 0; a(2) = 1 since only the prime 2 in base 2 has distinct integers, 10_2;
%e a(3) = 6 since the primes {2, 3, 5, 7, 11 & 19} in base 3 have distinct integers, {2_3, 10_3, 12_3, 21_3, 102_3, 201_3}; etc.
%e a(10) = 283086 because it is the partial sum of A073532.
%t f[b_] := Block[{c = 0, k = 1, lmt = b^b}, While[p = Prime@ k; p < lmt, k++; If[ Union[ Length /@ Split@ Sort@ IntegerDigits[p, b]] == {1}, c++ ]]; c]; Array[f, 6]
%o (Sage)
%o def a(n):
%o return sum(len(p.digits(n)) == len(set(p.digits(n))) for p in prime_range(n^n)) # _Eric M. Schmidt_, Oct 26 2014
%o (Python)
%o from sympy import isprime
%o from itertools import permutations
%o def a(n):
%o digs = "".join(str(i) for i in range(min(10, n)))
%o if n > 10: digs += "".join(chr(ord("A")+i) for i in range(n-10))
%o return sum(1 for i in range(1, n+1) for p in permutations(digs, i) if p[0] != '0' and isprime(int("".join(p), n)) )
%o print([a(n) for n in range(1, 10)]) # _Michael S. Branicky_, Dec 25 2021
%Y Cf. A073532.
%K nonn,base,hard,more
%O 1,3
%A _Robert G. Wilson v_, Jul 25 2008
%E a(11)-a(12) from _Eric M. Schmidt_, Oct 29 2014
%E a(13) from _Michael S. Branicky_, Dec 25 2021