OFFSET
0,2
COMMENTS
This sequence is a part of a class of sequences of the type: a(n) = sum(i=0,n,(C^i)*(i^k)). This sequence has C=2, k=2. Sequence A036799 has C=2, k=1. Suppose C>=2, k>=1 are integers. What is the general closed form for a(n)? - Ctibor O. Zizka, Feb 07 2008
REFERENCES
M. Petkovsek et al., A=B, Peters, 1996, p. 97.
Jolley, Summation of Series, Dover (1961), p. 6.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
S. Sykora, Finite and Infinite Sums of the Power Series (k^p)(x^k), DOI 10.3247/SL1Math06.002, Section V.
Index entries for linear recurrences with constant coefficients, signature (7,-18,20,-8).
FORMULA
a(n) = Sum_{k=0..n} 2^k * k^2. - Benoit Cloitre, Jun 11 2003
From R. J. Mathar, Oct 03 2011: (Start)
G.f.: 2*x*(1+2*x) / ( (1-x)*(1-2*x)^3 ).
a(n) = 2*A036826(n). (End)
a(0)=0, a(1)=2, a(2)=18, a(3)=90, a(n)=7*a(n-1)-18*a(n-2)+ 20*a(n-3)- 8*a(n-4). - Harvey P. Dale, Jun 13 2015
a(n) = Sum_{k=0..n} Sum_{i=0..n} k^2 * C(k,i). - Wesley Ivan Hurt, Sep 21 2017
E.g.f.: 2*(3 -2*x +4*x^2)*exp(2*x) -6*exp(x). - G. C. Greubel, Mar 31 2021
MAPLE
MATHEMATICA
Table[ -6+2^(n+1)*(3-2*n+n^2), {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2010 *)
LinearRecurrence[{7, -18, 20, -8}, {0, 2, 18, 90}, 30] (* Harvey P. Dale, Jun 13 2015 *)
PROG
(Magma) [-6+2^(n+1)*(3-2*n+n^2): n in [0..30]]; // Vincenzo Librandi, Oct 04 2011
(PARI) a(n)=2^(n+1)*(3 - 2*n + n^2) - 6 \\ Charles R Greathouse IV, Jun 11 2015
(Sage) [2^(n+1)*(3-2*n+n^2) -6 for n in (0..30)] # G. C. Greubel, Mar 31 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved