login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036800
a(n) = -6 + 2^(n+1)*(3 - 2*n + n^2).
12
0, 2, 18, 90, 346, 1146, 3450, 9722, 26106, 67578, 169978, 417786, 1007610, 2392058, 5603322, 12976122, 29753338, 67633146, 152567802, 341835770, 761266170, 1686110202, 3716153338, 8153726970, 17817403386, 38788923386
OFFSET
0,2
COMMENTS
This sequence is a part of a class of sequences of the type: a(n) = sum(i=0,n,(C^i)*(i^k)). This sequence has C=2, k=2. Sequence A036799 has C=2, k=1. Suppose C>=2, k>=1 are integers. What is the general closed form for a(n)? - Ctibor O. Zizka, Feb 07 2008
REFERENCES
M. Petkovsek et al., A=B, Peters, 1996, p. 97.
Jolley, Summation of Series, Dover (1961), p. 6.
LINKS
FORMULA
a(n) = Sum_{k=0..n} 2^k * k^2. - Benoit Cloitre, Jun 11 2003
From R. J. Mathar, Oct 03 2011: (Start)
G.f.: 2*x*(1+2*x) / ( (1-x)*(1-2*x)^3 ).
a(n) = 2*A036826(n). (End)
a(0)=0, a(1)=2, a(2)=18, a(3)=90, a(n)=7*a(n-1)-18*a(n-2)+ 20*a(n-3)- 8*a(n-4). - Harvey P. Dale, Jun 13 2015
a(n) = Sum_{k=0..n} Sum_{i=0..n} k^2 * C(k,i). - Wesley Ivan Hurt, Sep 21 2017
E.g.f.: 2*(3 -2*x +4*x^2)*exp(2*x) -6*exp(x). - G. C. Greubel, Mar 31 2021
MAPLE
A036800:= n-> 2^(n+1)*(3-2*n+n^2) -6; seq(A036800(n), n=0..30); # G. C. Greubel, Mar 31 2021
MATHEMATICA
Table[ -6+2^(n+1)*(3-2*n+n^2), {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2010 *)
LinearRecurrence[{7, -18, 20, -8}, {0, 2, 18, 90}, 30] (* Harvey P. Dale, Jun 13 2015 *)
PROG
(Magma) [-6+2^(n+1)*(3-2*n+n^2): n in [0..30]]; // Vincenzo Librandi, Oct 04 2011
(PARI) a(n)=2^(n+1)*(3 - 2*n + n^2) - 6 \\ Charles R Greathouse IV, Jun 11 2015
(Sage) [2^(n+1)*(3-2*n+n^2) -6 for n in (0..30)] # G. C. Greubel, Mar 31 2021
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved