The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206623 G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^3). 11
1, 2, 18, 88, 398, 1768, 7508, 30644, 121310, 467234, 1756080, 6457168, 23274788, 82381584, 286760344, 982874120, 3320800590, 11070619228, 36446345198, 118581503192, 381552358872, 1214868568728, 3829841265428, 11959828895612, 37013411304892, 113570015855642 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Convolution of A023872 and A248882. - Vaclav Kotesovec, Aug 19 2015
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..4595 (terms 0..1000 from Vaclav Kotesovec)
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 23.
FORMULA
G.f.: exp( Sum_{n>=1} (sigma_4(2*n) - sigma_4(n))/8 * x^n/n ), where sigma_4(n) is the sum of 4th powers of divisors of n (A001159).
Inverse Euler transform has g.f.: x*(2 + 15*x + 46*x^2 + 60*x^3 + 46*x^4 + 15*x^5 + 2*x^6)/(1-x^2)^4.
a(n) ~ (93*Zeta(5))^(59/600) * exp(5/4 * (93*Zeta(5)/2)^(1/5) * n^(4/5) + Zeta'(-3)) / (2^(59/100) * sqrt(5*Pi) * n^(359/600)), where Zeta(5) = A013663, Zeta'(-3) = A259068. - Vaclav Kotesovec, Aug 19 2015
EXAMPLE
G.f.: A(x) = 1 + 2*x + 18*x^2 + 88*x^3 + 398*x^4 + 1768*x^5 + 7508*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^8/(1-x^2)^8 * (1+x^3)^27/(1-x^3)^27 *...
Also, A(x) = Euler transform of [2,15,54,120,250,405,686,960,1458,...]:
A(x) = 1/((1-x)^2*(1-x^2)^15*(1-x^3)^54*(1-x^4)^120*(1-x^5)^250*(1-x^6)^405*...).
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
PROG
(PARI) {a(n)=polcoeff(prod(m=1, n+1, ((1+x^m)/(1-x^m+x*O(x^n)))^(m^3)), n)}
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 4)-sigma(m, 4))/8*x^m/m)+x*O(x^n)), n)}
(PARI) {a(n)=local(InvEulerGF=x*(2+15*x+46*x^2+60*x^3+46*x^4+15*x^5+2*x^6)/(1-x^2+x*O(x^n))^4); polcoeff(1/prod(k=1, n, (1-x^k+x*O(x^n))^polcoeff(InvEulerGF, k)), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A156616, A206622, A206624, A001159 (sigma_4).
Sequence in context: A357757 A172529 A201236 * A036800 A157052 A280157
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 12 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 05:28 EDT 2024. Contains 373366 sequences. (Running on oeis4.)