The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206624 G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^4). 9
 1, 2, 34, 228, 1414, 8872, 52876, 301136, 1662614, 8929406, 46738920, 239036116, 1197187780, 5882369976, 28397283056, 134864166352, 630819797174, 2908948327780, 13236421303742, 59477002686404, 264104800719672, 1159649708139680, 5037895127964316 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Convolution of A023873 and A248883. - Vaclav Kotesovec, Aug 19 2015 In general, for m >= 0, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(k^m), then a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^((1-2*Zeta(-m))/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + Zeta'(-m)) / sqrt((m+2)*Pi*n). - Vaclav Kotesovec, Aug 19 2015 If m is even and m >= 2, then can be simplified as: a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^(1/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + (-1)^(m/2) * Gamma(m+1) * Zeta(m+1) / (2^(m+1) * Pi^m)) / sqrt((m+2)*Pi*n). - Vaclav Kotesovec, Aug 19 2015 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..2916 (terms 0..1000 from Vaclav Kotesovec) Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 23. FORMULA G.f.: exp( Sum_{n>=1} (sigma_5(2*n) - sigma_5(n))/16 * x^n/n ), where sigma_5(n) is the sum of 5th powers of divisors of n (A001160). Inverse Euler transform has g.f.: x*(2 + 31*x + 152*x^2 + 341*x^3 + 460*x^4 + 341*x^5 + 152*x^6 + 31*x^7 + 2*x^8)/(1-x^2)^5. a(n) ~ exp(3*2^(2/3)*Pi*n^(5/6)/5 + 3*Zeta(5)/(4*Pi^4)) / (2^(7/6) * 3^(1/2) * n^(7/12)), where Zeta(5) = A013663. - Vaclav Kotesovec, Aug 19 2015 a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A096960(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 30 2017 EXAMPLE G.f.: A(x) = 1 + 2*x + 18*x^2 + 88*x^3 + 398*x^4 + 1768*x^5 + 7508*x^6 +... where A(x) = (1+x)/(1-x) * (1+x^2)^16/(1-x^2)^16 * (1+x^3)^81/(1-x^3)^81 *... Also, A(x) = Euler transform of [2,31,162,496,1250,2511,4802,7936,...]: A(x) = 1/((1-x)^2*(1-x^2)^31*(1-x^3)^162*(1-x^4)^496*(1-x^5)^1250*(1-x^6)^2511*...). MATHEMATICA nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *) PROG (PARI) {a(n)=polcoeff(prod(m=1, n+1, ((1+x^m)/(1-x^m+x*O(x^n)))^(m^4)), n)} (PARI) {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 5)-sigma(m, 5))/16*x^m/m)+x*O(x^n)), n)} (PARI) {a(n)=local(InvEulerGF=x*(2+31*x+152*x^2+341*x^3+460*x^4+341*x^5+152*x^6+31*x^7+2*x^8)/(1-x^2+x*O(x^n))^5); polcoeff(1/prod(k=1, n, (1-x^k+x*O(x^n))^polcoeff(InvEulerGF, k)), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A015128 (m=0), A156616 (m=1), A206622 (m=2), A206623 (m=3), A001160 (sigma_5). Sequence in context: A213826 A259108 A064202 * A131471 A318268 A036827 Adjacent sequences: A206621 A206622 A206623 * A206625 A206626 A206627 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 12 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 23:46 EST 2022. Contains 358572 sequences. (Running on oeis4.)