OFFSET
0,2
REFERENCES
M. Petkovsek et al., A=B, Peters, 1996, p. 97.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
S. Sykora, Finite and Infinite Sums of the Power Series (k^p)(x^k), DOI 10.3247/SL1Math06.002, Section V.
Index entries for linear recurrences with constant coefficients, signature (9,-32,56,-48,16).
FORMULA
a(n) = Sum_{k=0..n} 2^k*k^3. - Benoit Cloitre, Jun 11 2003
G.f.: 2*x*(1 +8*x +4*x^2)/((1-x)*(1-2*x)^4). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009
a(n) = 9*a(n-1) -32*a(n-2) +56*a(n-3) -48*a(n-4) +16*a(n-5) for n>4 with a(0)=0, a(1)=2, a(2)=34, a(3)=250, a(4)=1274. - Harvey P. Dale, Dec 15 2011
a(n) = Sum_{k=0..n} Sum_{i=0..n} k^3 * C(k,i). - Wesley Ivan Hurt, Sep 21 2017
E.g.f.: 2 (13*exp(x) + (-13 +14*x +8*x^3)*exp(2*x)). - G. C. Greubel, Mar 31 2021
EXAMPLE
a(3) = 2^0*0^3 + 2^1*1^3 + 2^2*2^3 + 2^3*3^3 = 250.
MAPLE
A036827:= n-> 2*(13 + 2^n*(-13 +9*n -3*n^2 +n^3)); seq(A026827(n), n=0..30); # G. C. Greubel, Mar 31 2021
MATHEMATICA
Table[26 +2^(n+1)(-13 +9n -3n^2 +n^3), {n, 0, 30}] (* or *) LinearRecurrence[ {9, -32, 56, -48, 16}, {0, 2, 34, 250, 1274}, 31] (* Harvey P. Dale, Dec 15 2011 *)
PROG
(Haskell)
a036827 n = 2^(n+1) * (n^3 - 3*n^2 + 9*n - 13) + 26
-- Reinhard Zumkeller, May 24 2012
(PARI) a(n)=26+2^(n+1)*(-13+9*n-3*n^2+n^3) \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [2*(13 + 2^n*(-13 +9*n -3*n^2 +n^3)): n in [0..35]]; // G. C. Greubel, Mar 31 2021
(Sage) [2*(13 + 2^n*(-13 +9*n -3*n^2 +n^3)) for n in (0..35)] # G. C. Greubel, Mar 31 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved